In the heat exchangers, twisted tape insert is a technique to enhance heat transfer. In this paper, the experimental and numerical investigations are arranged to analyze thermal performance with entropy generation analysis on single and double strip helical screw tape inserts. The finite volume method is used with shear stress transport K-ω model to analyze fluid flow in tube with inserts. The Nusselt number attained enhancement with double strip as compared to single strip helical screw inserts at decreased values of twist ratio and increased values of Reynolds number. However, the Nusselt number attained maximum enhancement of 112% with double strip helical screw insert than plain tube at 4000 of Reynolds number (Re). The common correlations for Nusselt number and friction factor are generated with respect to Reynolds number, number of the strips and twist ratio. Entropy generation analysis is also performed. The thermal performance factor attained its enhancement with double strip than single strip helical screw inserts at twist ratio of 2.5 and 3; whereas, double strip helical screw insert attained maximum value of 1.5 at twist ratio of 2.5 and Reynolds number of 16000. The double strip helical screw inserts are suitable for miniaturization of heat exchanger.
The experimental analysis is arranged to evaluate the thermal hydraulic performance on nanofluid flow in helical screw insert with tube at a number of strips and different twist ratios in laminar flow regime. The single strip (SS) helical screw inserts are also compared with the double strip (DS) helical screw inserts. The heat transfer enhancement is achieved with nanofluid flow in double strip as compared with single strip helical screw insert at decreased values of twist ratio and increased values of Reynolds number. A maximum enhancement of 421% is found in the value of Nusselt number with double strip helical screw insert at twist ratio of 1.5 and low value of Reynolds number in the flow of nanofluid than water in plain tube. The common correlations of Nusselt number and friction factor are generated. The thermal performance factor (TPF) is achieved at a maximum value of 2.42 with double strip than single strip helical screw inserts at twist ratio of 2.5 and low value of Reynolds number. The present analysis shows suitability of the double strip helical screw insert to enable miniaturization of the heat exchangers. A compact heat exchanger decreases the size of thermal application such as solar water heater, solar power plants, electronic cooling systems, radiator, etc., which could save environment by pollution reduction with utilization of energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.