BackgroundThe Janus kinase (JAK) family of tyrosine kinases includes JAK1, JAK2, JAK3 and TYK2, and is required for signaling through Type I and Type II cytokine receptors. CP-690,550 is a potent and selective JAK inhibitor currently in clinical trials for rheumatoid arthritis (RA) and other autoimmune disease indications. In RA trials, dose-dependent decreases in neutrophil counts (PBNC) were observed with CP-690,550 treatment. These studies were undertaken to better understand the relationship between JAK selectivity and PBNC decreases observed with CP-690,550 treatment.MethodsPotency and selectivity of CP-690,550 for mouse, rat and human JAKs was evaluated in a panel of in vitro assays. The effect of CP-690,550 on granulopoiesis from progenitor cells was also assessed in vitro using colony forming assays. In vivo the potency of orally administered CP-690,550 on arthritis (paw edema), plasma cytokines, PBNC and bone marrow differentials were evaluated in the rat adjuvant-induced arthritis (AIA) model.ResultsCP-690,550 potently inhibited signaling through JAK1 and JAK3 with 5-100 fold selectivity over JAK2 in cellular assays, despite inhibiting all four JAK isoforms with nM potency in in vitro enzyme assays. Dose-dependent inhibition of paw edema was observed in vivo with CP-690,550 treatment. Plasma cytokines (IL-6 and IL-17), PBNC, and bone marrow myeloid progenitor cells were elevated in the context of AIA disease. At efficacious exposures, CP-690,550 returned all of these parameters to pre-disease levels. The plasma concentration of CP-690,550 at efficacious doses was above the in vitro whole blood IC50 of JAK1 and JAK3 inhibition, but not that of JAK2.ConclusionResults from this investigation suggest that CP-690,550 is a potent inhibitor of JAK1 and JAK3 with potentially reduced cellular potency for JAK2. In rat AIA, as in the case of human RA, PBNC were decreased at efficacious exposures of CP-690,550. Inflammatory end points were similarly reduced, as judged by attenuation of paw edema and cytokines IL-6 and IL-17. Plasma concentration at these exposures was consistent with inhibition of JAK1 and JAK3 but not JAK2. Decreases in PBNC following CP-690,550 treatment may thus be related to attenuation of inflammation and are likely not due to suppression of granulopoiesis through JAK2 inhibition.
Betulinic acid is a pentacyclic triterpene natural product initially identified as a melanoma-specific cytotoxic agent that exhibits low toxicity in animal models. Subsequent studies show that betulinic acid induces apoptosis and antiangiogenic responses in tumors derived from multiple tissues; however, the underlying mechanism of action is unknown. Using LNCaP prostate cancer cells as a model, we now show that betulinic acid decreases expression of vascular endothelial growth (VEGF) and the antiapoptotic protein survivin. The mechanism of these betulinic acid-induced antiangiogenic and proapoptotic responses in both LNCaP cells and in tumors is due to activation of selective proteasome-dependent degradation of the transcription factors specificity protein 1 (Sp1), Sp3, and Sp4, which regulate VEGF and survivin expression. Thus, betulinic acid acts as a novel anticancer agent through targeted degradation of Sp proteins that are highly overexpressed in tumors. [Cancer Res 2007;67(6):2816-23]
Polymorphonuclear leukocytes (neutrophils) are essential in the defense against invading microorganisms, tissue trauma or any inciting inflammatory signals. Hepatic infiltration of neutrophils is an acute response to recent or ongoing liver injury, hepatic stress or unknown systemic inflammatory signals. Once neutrophils reach the liver, they can cause mild-to-severe tissue damage and consequent liver failure. For neutrophils to appear in the liver, neutrophils have to undergo systemic activation (priming) by inflammatory mediators such as cytokines, chemokines, complement factors, immune complexes, opsonized particles and other biologically active molecules, e.g., platelet activating factor. Neutrophils accumulated in the hepatic microvasculature (sinusoids and postsinusoidal venules) can extravasate (transmigrate) into the hepatic parenchyma if they receive a signal from distressed cells. Transmigration can be mediated by a chemokine gradient established towards the hepatic parenchyma and generally involves orchestration by adhesion molecules on neutrophils (β 2 integrins) and on endothelial cells (intracellular adhesion molecules, ICAM-1). After transmigration, neutrophils adhere to distressed hepatocytes through their β 2 integrins and ICAM-1 expressed on hepatocytes. Neutrophil contact with hepatocytes mediate oxidative killing of hepatocytes by initiation of respiratory burst and neutrophil degranulation leading to hepatocellular oncotic necrosis. Neutrophil-mediated liver injury has been demonstrated in a variety of diseases and chemical/drug toxicities. Relevant examples are discussed in this review.
The nuclear receptor superfamily of eukaryotic transcription factors encompasses steroid hormone and other nuclear receptors for which ligands have been identified and orphan receptors with no known ligands (1-7). Nuclear receptors share common structural features that include an N-terminal A/B domain, containing activation function-1 (AF-1),1 and a C-terminal E domain, which contains AF-2 and the ligand binding domain (LBD). Nuclear receptors also have a DNA binding domain (C domain), a variable hinge (D domain), and C-terminal F regions. Ligand activation of class 1 steroid hormone receptors induces homo-or heterodimer formations, which interact with consensus or nonconsensus palindromic response elements. In contrast, class 2 receptors form heterodimers with the retinoic X receptor as a common partner, whereas class 3 and 4 orphan receptors act as homodimers or monomers and bind to direct response element repeats or single sites, respectively. The DNA binding domains of nuclear receptors all contain two zinc finger motifs that interact with similar half-site motifs; however, these interactions vary with the number of half-sites (1 or 2), their orientation, and spacing. Differences in nuclear receptor action are also determined by their other domains, which dictate differences in ligand binding, receptor dimerization, and interaction with other nuclear cofactors. Most orphan receptors were initially cloned and identified as members of the nuclear receptor family based on their domain structure and endogenous or exogenous ligands have subsequently been identified for many of these proteins (5-7).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.