In this paper, we study the resource slicing problem in a dynamic multiplexing scenario of two distinct 5G services, namely Ultra-Reliable Low Latency Communications (URLLC) and enhanced Mobile BroadBand (eMBB). While eMBB services focus on high data rates, URLLC is very strict in terms of latency and reliability. In view of this, the resource slicing problem is formulated as an optimization problem that aims at maximizing the eMBB data rate subject to a URLLC reliability constraint, while considering the variance of the eMBB data rate to reduce the impact of immediately scheduled URLLC traffic on the eMBB reliability. To solve the formulated problem, an optimizationaided Deep Reinforcement Learning (DRL) based framework is proposed, including: 1) eMBB resource allocation phase, and 2) URLLC scheduling phase. In the first phase, the optimization problem is decomposed into three subproblems and then each subproblem is transformed into a convex form to obtain an approximate resource allocation solution. In the second phase, a DRL-based algorithm is proposed to intelligently distribute the incoming URLLC traffic among eMBB users. Simulation results show that our proposed approach can satisfy the stringent URLLC reliability while keeping the eMBB reliability higher than 90%.
Federated learning (FL) rests on the notion of training a global model in a decentralized manner. Under this setting, mobile devices perform computations on their local data before uploading the required updates to improve the global model. However, when the participating clients implement an uncoordinated computation strategy, the difficulty is to handle the communication efficiency (i.e., the number of communications per iteration) while exchanging the model parameters during aggregation. Therefore, a key challenge in FL is how users participate to build a high-quality global model with communication efficiency. We tackle this issue by formulating a utility maximization problem, and propose a novel crowdsourcing framework to leverage FL that considers the communication efficiency during parameters exchange. First, we show an incentivebased interaction between the crowdsourcing platform and the participating client's independent strategies for training a global learning model, where each side maximizes its own benefit. We formulate a two-stage Stackelberg game to analyze such scenario and find the game's equilibria. Second, we formalize an admission control scheme for participating clients to ensure a level of local accuracy. Simulated results demonstrate the efficacy of our proposed solution with up to 22% gain in the offered reward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.