Purpose In the present study, wire electro-discharge machining (WEDM) of Inconel 625 (In-625) is performed with the machining parameter such as spark-on time, spark-off time, wire-speed, wire tension and servo voltage. The purpose of this study is to find the most favorable machining parameter setting with respect to WEDM performance such as material removal rate (MRR) and surface roughness (RA). Design/methodology/approach Taguchi’s L27 orthogonal array has been used to design the experiments with varying machining parameters into three-level four factors. A hybrid multi-optimization technique has been purposed with grey relation analysis and fuzzy inference system integrated with teaching learning-based optimization to achieve optimum machinability (MRR and RA in present case). The obtained result has been compared with two evolutionary optimization tools via a genetic algorithm and simulated annealing. Findings It has been found that proposed hybrid technique taking minimum computational time, provide better solution and avoid priority weightage calculation by decision-makers. A confirmation test has been performed at single and multi-optimal parameter settings. The decision-makers have been chosen to select any single or multi-parameter setting as per the industry’s demand. Originality/value The proposed optimization technique provides better machinability of In-625 using zinc-coated brass wire electrode during WEDM operation.
Now a day's classification of document is an important area for research, as large amount of electronic documents are available in form of unstructured, semi structured and structured information. Document classification will be applicable for World Wide Web, electronic book sites, online forums, electronic mails, online blogs, digital libraries and online government repositories. So it is necessary to organize the information and proper categorization and knowledge discovery is also important. This paper focused on the existing literature and explored the techniques for automatic documents classification i.e. documents representation, knowledge extraction and classification. In this paper author propose an algorithm and architecture for automatic document collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.