The presence of inorganic nitrogen species in water can be unsuitable for drinking and detrimental to the environment. In this study, a surface-enhanced Raman spectroscopy (SERS) method coupled with a commercially available gold nanosubstrate (a gold-coated silicon material) was evaluated for the detection of nitrate and nitrite in water and wastewater. Applications of SERS coupled with gold nanosubstrates resulted in an enhancement of Raman signals by a factor of ∼10(4) compared to that from Raman spectroscopy. The new method was able to detect nitrate with linear ranges of 1-10,000 mg NO3(-)/L (R(2)= 0.978) and 1-100 mg NO3(-)/L (R(2)= 0.919) for water and wastewater samples, respectively. Among the common anions, phosphate appeared to be the major interfering anion affecting nitrate measurement. Nevertheless, the percentage error of nitrate measurement in wastewater by the proposed SERS method was comparable to that by ion chromatography. The nitrate detection limits in water and wastewater samples were about 0.5 mg/L. The SERS method could simultaneously detect sulfate, which may serve as a reference standard in water. These results suggested that the SERS coupled with nanosubstrates is a promising method to determine nitrate concentrations in water and wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.