Simultaneous stabilization deals with the following question: given a finite number of LTI plants 1 2 does there exist a single LTI controller such that each of the feedback interconnections ( ) ( = 1 2) is internally stable? This paper presents a new methodology for the design of simultaneously stabilizing controllers for two or more plants that satisfy a sufficient condition. A classic result from simultaneous-stability theory is invoked to cast the sufficient condition as a linear matrix inequality (LMI). It is shown that in this setting, the problem of design of simultaneously stabilizing controllers can be reduced to that of a standard control problem. The technique developed is applied to the design of a fault-tolerantcontroller for lane-keeping control of automated vehicles. The controller makes the system insensitive to a failure in either one of two lateral error measuring sensors used for lane-keeping control. Experimental results confirm the efficacy of the design and reinforce analytical predictions of performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.