With over 172 Million people infected with the novel coronavirus (COVID-19) globally and with the numbers increasing exponentially, the dire need of a fast diagnostic system keeps on surging. With shortage of kits, and deadly underlying disease due to its vastly mutating and contagious properties, the tired physicians need a fast diagnostic method to cater the requirements of the soaring number of infected patients. Laboratory testing has turned out to be an arduous, cost-ineffective and requiring a well-equipped laboratory for analysis. This paper proposes a convolutional neural network (CNN) based model for analysis/detection of COVID-19, dubbed as CovCNN, which uses the patient’s chest X-ray images for the diagnosis of COVID-19 with an aim to assist the medical practitioners to expedite the diagnostic process amongst high workload conditions. In the proposed CovCNN model, a novel deep-CNN based architecture has been incorporated with multiple folds of CNN. These models utilize depth wise convolution with varying dilation rates for efficiently extracting diversified features from chest X-rays. 657 chest X-rays of which 219 were X-ray images of patients infected from COVID-19 and the remaining were the images of non-COVID-19 (i.e. normal or COVID-19 negative) patients. Further, performance evaluation on the dataset using different pre-trained models has been analyzed based on the loss and accuracy curve. The experimental results show that the highest classification accuracy (98.4%) is achieved using the proposed CovCNN model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.