BACKGROUND: Expelled droplet count is an important factor when investigating the efficacy of face coverings since higher droplet counts indicate an increased possibility of disease transmission for airborne viruses such as COVID-19. While there is some published work relating facemask style to expelled droplet count during speech, there is no published data regarding the effectiveness of traditional Islamic face coverings such as the ghutra and niqab commonly worn by men and women in the Arabian Peninsula. OBJECTIVES: Measure the effectiveness of worn traditional Islamic face coverings in reducing expelled droplet count during speech. DESIGN: Experimental study SETTING: Biomedical engineering department at a university in Saudi Arabia. MATERIALS AND METHODS: Using a previously described low-cost method for quantifying expelled droplets, this study compares droplet counts through commonly worn traditional Islamic face coverings and conventional three-ply surgical masks worn during speech. The device records scattered light from droplets (>5 μm diameter) as they pass through a laser light sheet (520 nm), and then video processing yields droplet counts. MAIN OUTCOME MEASURES: Percent reduction in the number of expelled droplets passing through face coverings during speech compared to no face covering MAIN OUTCOME MEASURES: 9-15 recorded samples per face covering (n=3) plus no face covering control (n=1) in three females. RESULTS: The average percent reduction for each mask type compared to no mask trial was 76% for the cotton ghutra, 93% for the niqab, and 95% for the surgical mask. The niqab and ghutra had relatively high variability in droplet reduction. CONCLUSIONS: Traditional Islamic face coverings block some expelled droplets, but at lower rates than surgical masks. High standard deviations within facemask groups with high variability in fit (i.e., the cotton ghutra) further denote the importance of fit in face covering effectiveness. Some protection from airborne viruses is likely with traditional Islamic face coverings compared to no mask, but the amount of protection depends on the fit of the face covering. LIMITATIONS: Detectable droplets limited to particles greater than 5 μm diameter with forward expulsion direction. CONFLICT OF INTEREST: None.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.