MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29’s functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
BackgroundAscites syndrome is the most severe manifestation of pulmonary hypertension in fast-growing broilers. The disease can be attributed to increased body weights of birds, where the higher metabolic load is not matched by sufficient oxygen supply to the cells and tissues. Although there are environmental components, the disease exhibits moderate to high heritability. The current study uses high throughput whole genome resequencing (WGR) to identify genes and chromosomal regions associated with ascites.ResultsThe WGR data identified the CPQ gene on chromosome 2. The association was confirmed by genotyping a large collection of DNAs from phenotyped birds from three distinct broiler lines using SNPs in intron 6 and exon 8 of the CPQ gene. By combining the genotype data for these two SNP loci, we identified three different alleles segregating in the three broiler lines. Particular genotypes could be associated with resistance to ascites. We further determined that particular genotypes most associated with resistance overexpress CPQ mRNA in three tissues which might explain the role of these alleles in contributing to resistance.ConclusionsOur findings indicate CPQ is an important determinant of pulmonary hypertension syndrome leading to ascites in broilers. We identified particular SNPs that can be used for marker-assisted selection of broilers for resistance to the disease. Our findings validate WGR as a highly efficient approach to map determinants contributing to complex phenotypic or disease-related traits. The CPQ gene has been associated with pulmonary hypertension in genome-wide association studies in humans. Therefore, ascites investigations in broilers are likely to provide insights into some forms of hypertension in humans.
Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer with a dismal prognosis. miR-29a is commonly downregulated in PDAC; however, mechanisms for its loss and role still remain unclear. Here, we show that in PDAC, repression of miR-29a is directly mediated by MYC via promoter activity. RNA sequencing analysis, integrated with miRNA target prediction, identified global miR-29a downstream targets in PDAC. Target enrichment coupled with gene ontology and survival correlation analyses identified the top five miR-29a-downregulated target genes (LOXL2, MYBL2, CLDN1, HGK, and NRAS) that are known to promote tumorigenic mechanisms. Functional validation confirmed that upregulation of miR-29a is sufficient to ablate translational expression of these five genes in PDAC. We show that the most promising target among the identified genes, LOXL2, is repressed by miR-29a via 3 0 -untranslated region binding. Pancreatic tissues from a PDAC murine model and patient biopsies showed overall high LOXL2 expression with inverse correlations with miR-29a levels. Collectively, our data delineate an antitumorigenic, regulatory role of miR-29a and a novel MYC-miR-29a-LOXL2 regulatory axis in PDAC pathogenesis, indicating the potential of the molecule in therapeutic opportunities.Implications: This study unravels a novel functional role of miR-29a in PDAC pathogenesis and identifies an MYC-miR-29a-LOXL2 axis in regulation of the disease progression, implicating miR-29a as a potential therapeutic target for PDAC.
Ascites is a multi-faceted disease commonly observed in fast growing broilers, which is initiated when the body is insufficiently oxygenated. A series of events follow, including an increase in pulmonary artery pressure, right ventricle hypertrophy, and accumulation of fluid in the abdominal cavity and pericardium. Advances in management practices along with improved selection programs have decreased ascites incidence in modern broilers. However, ascites syndrome remains an economically important disease throughout the world, causing estimated losses of $100 million per year. In this study, a 60 K Illumina SNP BeadChip was used to perform a series of genome wide association studies (GWAS) on the 16th and 18th generation of our relaxed (REL) line descended from a commercial elite broiler line beginning in 1995. Regions significantly associated with ascites incidence were identified on chromosome 2 around 70 megabase pairs (Mbp) and on chromosome Z around 60 Mbp. Five candidate single nucleotide polymorphisms (SNP) were evaluated as indicators for these 2 regions in order to identify association with ascites and right ventricle to total ventricle weight (RVTV) ratios. Chromosome 2 SNP showed an association with RVTV ratios in males phenotyped as ascites resistant and ascites susceptible (P = 0.02 and P = 0.03, respectively). The chromosome Z region also indicates an association with resistant female RVTV values (P = 0.02). Regions of significance identified on chromosomes 2 and Z described in this study will be used as proposed candidate regions for further investigation into the genetics of ascites. This information will lead to a better understanding of the underlying genetics and gene networks contributing to ascites, and thus advances in ascites reduction through commercial breeding schemes.
Excess telomere shortening has been observed in most cancer cells. The telomere quantitative polymerase chain reaction (qPCR) assay has become an important tool for epidemiological studies examining the effects of aging, stress, and other factors on the length of telomeres. Current telomere qPCR methods analyze the relative length of telomeres by amplifying telomere sequence products and normalizing with single-copy gene products. However, the current telomere qPCR does not always reflect absolute telomere length in cancer DNA. Because of genomic instability in cancer cells, we hypothesized that the use of single-copy genes (scg) is less accurate for normalizing data in cancer DNA and that new primer sets are required to better represent relative telomere length in cancer DNA. We first confirmed that cancer cells had a different copy ratio among different scg, implying that DNA is aneuploid. By using the new primer sets that amplify multiple-copy sequences (mcs) throughout the genome, the telomere qPCR results showed that the mcs primers were interchangeable with the scg primers as reference primers in normal DNA. By comparing results from the traditional southern blotting method (as kilobases) and results from monochrome multiplex qPCR using the mcs primers (as T/M ratios), we verified that the T/M ratio is highly correlated with absolute telomere length from the southern blot analysis. Together, the mcs primers were able to represent the telomere lengths accurately in cancer DNA samples. These results would allow for analyses of telomeres within cancerous DNA and the development of new, less invasive diagnostic tools for cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.