Sugar-aza-crown ether-based cavitand 1 can act as a selective turn-on fluorescence sensor for hydrogen sulfate ion in methanol among a series of tested anions. Spectroscopic studies, particularly NMR spectroscopy, revealed that the C-H hydrogen bonding between 1,2,3-triazole ring of cavitand 1 and hydrogen sulfate ion is crucial for the high selectivity of the receptor for hydrogen sulfate.
We synthesized a simple fluorescent receptor 3 bearing two boronic acid groups as recognition sites. The recognition behaviour of receptor 3 towards various anions was evaluated in THF/H(2)O (1:1, v/v) solution. Receptor 3 showed high selectivity for iodide among a series of anions. Fluorescence spectroscopy and computational calculations revealed that the electrostatic interaction played a crucial role in its high selectivity for iodide.
In this study, we investigated the antioxidative functions of carotenes (CARs) against the peroxidation of lipids initiated by nitrogen dioxide using density functional theory. The hydrogen-atom transfer (HAT), radical adduct formation (RAF), and electron transfer (ET) mechanisms were investigated. We chose β-carotene (β-CAR) and lycopene (LYC) and compared their NO2(•) initiations and peroxidations with those of linoleic acid (LAH), the model of the lipid. We found that for CARs ET is more likely to occur in the most polar (water) environment than are HAT and RAF. In less polar environments, CARs react more readily with NO2(•) via HAT and RAF than does the lipid model, LAH. Comparatively, reaction barriers for the RAF between CARs and NO2(•) are smaller than those for the HAT. The additions of O2 to the radical intermediates O2N-CAR(•) and CAR(-H)(•) involve sizable barriers and are endergonic. Other than HAT of LAH, we revealed that lipid peroxidation is likely to be initiated by -NO2 addition and the subsequent barrierless addition of O2. Finally, LYC is a more effective antioxidative agent against NO2(•)-initiated lipid peroxidation than is β-CAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.