Food allergy is a common and often fatal disease with no effective treatment. We describe here a new immunoprophylactic strategy using oral allergen-gene immunization to modulate peanut antigen-induced murine anaphylactic responses. Oral administration of DNA nanoparticles synthesized by complexing plasmid DNA with chitosan, a natural biocompatible polysaccharide, resulted in transduced gene expression in the intestinal epithelium. Mice receiving nanoparticles containing a dominant peanut allergen gene (pCMVArah2) produced secretory IgA and serum IgG2a. Compared with non-immunized mice or mice treated with 'naked' DNA, mice immunized with nanoparticles showed a substantial reduction in allergen-induced anaphylaxis associated with reduced levels of IgE, plasma histamine and vascular leakage. These results demonstrate that oral allergen-gene immunization with chitosan-DNA nanoparticles is effective in modulating murine anaphylactic responses, and indicate its prophylactic utility in treating food allergy.
SummaryAllergic asthma is characterized by airway hyperresponsiveness and pulmonary eosinophilia, and may be mediated by T helper (Th) lymphocytes expressing a Th2 cytokine pattern. Interleukin (IL) 12 suppresses the expression of Th2 cytokines and their associated responses, including eosinophilia, serum immunoglobulin E, and mucosal mastocytosis. We have previously shown in a routine model that antigen-induced increases in airway hyperresponsiveness and pulmonary eosinophilia are CD4 + T cell dependent. We used this model to determine the ability of IL-12 to prevent antigen-induced increases in airway hyperresponsiveness, bronchoalveolar lavage (BAL) eosinophils, and lung Th2 cytokine expression. Sensitized A/J mice developed airway hyperresponsiveness and increased numbers of BAL eosinophils and other inflammatory cells after single or repeated intratracheal challenges with sheep red blood cell antigen. Pulmonary mKNA and protein levels of the Th2 cytokines IL-4 and IL-5 were increased after antigen challenge. Administration oflL-12 (1 p,g/d • 5 d) at the time of a single antigen challenge abolished the airway hyperresponsiveness and pulmonary eosinophilia and promoted an increase in interferon (IFN) ~ and decreases in IL-4 and IL-5 expression. The effects of IL-12 were partially dependent on IFN-3~, because concurrent treatment with IL-12 and anti-IFN-~/monoclonal antibody partially reversed the inhibition of airway hyperresponsiveness and eosinophilia by IL-12. Treatment of mice with IL-12 at the time of a second antigen challenge also prevented airway hyperresponsiveness and significantly reduced numbers of BAL inflammatory cells, reflecting the ability of IL-12 to inhibit responses associated with ongoing antigen-induced pulmonary inflammation. These data show that antigen-induced airway hyperresponsiveness and inflammation can be blocked by IL-12, which suppresses Th2 cytokine expression. Local administration of IL-12 may provide a novel immunotherapy for the treatment of pulmonary allergic disorders such as atopic asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.