In the NeurIPS 2018 Artificial Intelligence for Prosthetics challenge, participants were tasked with building a controller for a musculoskeletal model with a goal of matching a given time-varying velocity vector. Top participants were invited to describe their algorithms. In this work, we describe the challenge and present thirteen solutions that used deep reinforcement learning approaches. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each team implemented different modifications of the known algorithms by, for example, dividing the task into subtasks, learning low-level control, or by incorporating expert knowledge and using imitation learning.
We present Modular Memory Units (MMUs), a new class of memory-augmented neural network. MMU builds on the gated neural architecture of Gated Recurrent Units (GRUs) and Long Short Term Memory (LSTMs), to incorporate an external memory block, similar to a Neural Turing Machine (NTM). MMU interacts with the memory block using independent read and write gates that serve to decouple the memory from the central feedforward operation. This allows for regimented memory access and update, giving our network the ability to choose when to read from memory, update it, or simply ignore it. This capacity to act in detachment allows the network to shield the memory from noise and other distractions, while simultaneously using it to effectively retain and propagate information over an extended period of time. We train MMU using both neuroevolution and gradient descent, and perform experiments on two deep memory benchmarks. Results demonstrate that MMU performs significantly faster and more accurately than traditional LSTM-based methods, and is robust to dramatic increases in the sequence depth of these memory benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.