In the field of ophthalmology, diabetic retinopathy (DR) is a major cause of blindness. DR is based on retinal lesions including exudate. Exudates have been found to be one of the signs and serious DR anomalies, so the proper detection of these lesions and the treatment should be done immediately to prevent loss of vision. In this paper, pretrained convolutional neural network- (CNN-) based framework has been proposed for the detection of exudate. Recently, deep CNNs were individually applied to solve the specific problems. But, pretrained CNN models with transfer learning can utilize the previous knowledge to solve the other related problems. In the proposed approach, initially data preprocessing is performed for standardization of exudate patches. Furthermore, region of interest (ROI) localization is used to localize the features of exudates, and then transfer learning is performed for feature extraction using pretrained CNN models (Inception-v3, Residual Network-50, and Visual Geometry Group Network-19). Moreover, the fused features from fully connected (FC) layers are fed into the softmax classifier for exudate classification. The performance of proposed framework has been analyzed using two well-known publicly available databases such as e-Ophtha and DIARETDB1. The experimental results demonstrate that the proposed pretrained CNN-based framework outperforms the existing techniques for the detection of exudates.
Diabetic retinopathy (DR) is a fast-spreading disease across the globe, which is caused by diabetes. The DR may lead the diabetic patients to complete vision loss. In this scenario, early identification of DR is more essential to recover the eyesight and provide help for timely treatment. The detection of DR can be manually performed by ophthalmologists and can also be done by an automated system. In the manual system, analysis and explanation of retinal fundus images need ophthalmologists, which is a timeconsuming and very expensive task, but in the automated system, artificial intelligence is used to perform an imperative role in the area of ophthalmology and specifically in the early detection of diabetic retinopathy over the traditional detection approaches. Recently, numerous advanced studies related to the identification of DR have been reported. This paper presents a detailed review of the detection of DR with three major aspects; retinal datasets, DR detection methods, and performance evaluation metrics. Furthermore, this study also covers the author's observations and provides future directions in the field of diabetic retinopathy to overcome the research challenges for the research community. INDEX TERMS Artificial intelligence, deep learning, diabetic retinopathy, fundus images, machine learning, ophthalmology.
Image-based object recognition is a well-studied topic in the field of computer vision. Features extraction for hand-drawn sketch recognition and retrieval become increasingly popular among the computer vision researchers. Increasing use of touchscreens and portable devices raised the challenge for computer vision community to access the sketches more efficiently and effectively. In this article, a novel deep convolutional neural network-based (DCNN) framework for hand-drawn sketch recognition, which is composed of three wellknown pre-trained DCNN architectures in the context of transfer learning with global average pooling (GAP) strategy is proposed. First, an augmented-variants of natural images was generated and sum-up with TU-Berlin sketch images to all its corresponding 250 sketch object categories. Second, the features maps were extracted by three asymmetry DCNN architectures namely, Visual Geometric Group Network (VGGNet), Residual Networks (ResNet) and Inception-v3 from input images. Finally, the distinct features maps were concatenated and the features reductions were carried out under GAP layer. The resulting feature vector was fed into the softmax classifier for sketch classification results. The performance of proposed framework is comprehensively evaluated on augmented-variants TU-Berlin sketch dataset for sketch classification and retrieval task. Experimental outcomes reveal that the proposed framework brings substantial improvements over the state-of-the-art methods for sketch classification and retrieval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.