Purpose Patients treated with cranial radiation therapy (RT) are at risk for sensorineural hearing loss (SNHL). Although SNHL is often characterized as a delayed consequence of anticancer therapy, longitudinal reports of SNHL in childhood cancer survivors treated with contemporary RT are limited. We report the incidence, onset, severity, and long-term trajectory of SNHL among children receiving RT. Potential risk factors for SNHL were also identified. Patients and Methods Serial audiologic testing was conducted on 235 pediatric patients who were treated with conformal or intensity-modulated RT as part of an institutional phase II trial for localized primary brain tumors, including craniopharyngioma, ependymoma, and juvenile pilocytic astrocytoma. All but one patient had measurable cochlear radiation dose (CRD) greater than 0 Gy. The median follow-up from RT initiation to latest audiogram was 9 years with a median of 11 post-RT audiograms per patient. Audiograms were classified by the Chang Ototoxicity Grading Scale. Progression was defined by an increase in Chang grade from SNHL onset to the most recent evaluation. Results At last evaluation, SNHL was prevalent in 14% of patients: 2.1% had mild and 11.9% had significant SNHL requiring hearing aids. Median time from RT to SNHL onset was 3.6 years (range, 0.4 to 13.2 years). Among 29 patients with follow-up evaluations after SNHL onset, 65.5% experienced continued decline in hearing sensitivity in either ear and 34.5% had no change. Younger age at RT initiation (hazard ratio [HR], 2.32; 95% CI, 1.21 to 4.46), higher CRD (HR, 1.07; 95% CI, 1.03 to 1.11), and cerebrospinal fluid shunting (HR, 2.02; 95% CI, 1.07 to 3.78) were associated with SNHL. Conclusion SNHL is a late effect of RT that likely worsens over time. Long-term audiologic follow-up for a minimum of 10 years post-RT is recommended.
Musicianship confers enhancements to hearing at nearly all levels of the auditory system from periphery to percept. Musicians' superior psychophysical abilities are particularly evident in spectral discrimination and noise-degraded listening tasks, achieving higher perceptual sensitivity than their nonmusician peers. Greater spectral acuity implies that musicianship may increase auditory filter selectivity. This hypothesis was directly tested by measuring both forward- and simultaneous-masked psychophysical tuning curves. Sharper filter tuning (i.e., higher Q10) was observed in musicians compared to nonmusicians. Findings suggest musicians' pervasive listening benefits may be facilitated, in part, by superior spectral processing/decomposition as early as the auditory periphery.
The purpose of this study was to examine if a pre-determined exposure level and duration of MP3 player music would result in significant changes in cochlear function when measured with audiometric and physiological methods. Distortion-product otoacoustic emissions (DPOAEs), synchronized spontaneous otoacoustic emissions (SSOAEs), and hearing thresholds were measured in 20 normal-hearing adults before and after a 30-minute MP3 player music exposure. DPOAEs were acquired with 65/45 dB SPL primary tones (f(2)=0.842-7.996 kHz) with a frequency resolution of 8 points/octave. A probe microphone system recorded ear-canal music levels and was used to equalize levels at approximately 85 dBC across individuals during the music presentation. Comparison of pre- and post-exposure measurements revealed no significant differences in hearing thresholds, but DPOAE levels in half-octave bands centered from 1.4-6.0 kHz were significantly reduced following the music exposure. Post-exposure shifts in SSOAE frequency and level were highly variable in individuals identified with SSOAEs. The results for the exposure conditions explored in this study indicate that changes in otoacoustic emissions may precede the development of music-induced hearing threshold shifts.
The mammalian cochlea receives feedback from the brainstem medial olivocochlear (MOC) efferents, whose putative 'antimasking' function is to adjust cochlear amplification and enhance peripheral signal detection in adverse listening environments. Human studies have been inconsistent in demonstrating a clear connection between this corticofugal system and behavioral speech-in-noise (SIN) listening skills. To elucidate the role of brainstem efferent activity in SIN perception, we measured ear-specific contralateral suppression of transient-evoked otoacoustic emissions (OAEs), a proxy measure of MOC activation linked to auditory learning in noisy environments. We show that suppression of cochlear emissions is stronger with a more basal cochlear bias in the right ear compared with the left ear. Moreover, a strong negative correlation was observed between behavioral SIN performance and right-ear OAE suppression magnitudes, such that lower speech reception thresholds in noise were predicted by larger amounts of MOC-related activity. This brain-behavioral relation was not observed for left ear SIN perception. The rightward bias in contralateral MOC suppression of OAEs, coupled with the stronger association between physiological and perceptual measures, is consistent with left-hemisphere cerebral dominance for speech-language processing. We posit that corticofugal feedback from the left cerebral cortex through descending MOC projections sensitizes the right cochlea to signal-in-noise detection, facilitating figure-ground contrast and improving degraded speech analysis. Our findings demonstrate that SIN listening is at least partly driven by subcortical brain mechanisms; primitive stages of cochlear processing and brainstem MOC modulation of (right) inner ear mechanics play a critical role in dictating SIN understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.