Truncating CHD8 mutations are amongst the highest confidence risk factors for autism spectrum disorder (ASD) identified to date. Here, we report that Chd8 heterozygous mice display increased brain size, motor delay, hypertelorism, pronounced hypoactivity, and anomalous responses to social stimuli. Whereas gene expression in the neocortex is only mildly affected at midgestation, over 600 genes are differentially expressed in the early postnatal neocortex. Genes involved in cell adhesion and axon guidance are particularly prominent amongst the downregulated transcripts. Resting-state functional MRI identified increased synchronized activity in cortico-hippocampal and auditory-parietal networks in Chd8 heterozygous mutant mice, implicating altered connectivity as a potential mechanism underlying the behavioral phenotypes. Together, these data suggest that altered brain growth and diminished expression of important neurodevelopmental genes that regulate long-range brain wiring are followed by distinctive anomalies in functional brain connectivity in Chd8+/− mice. Human imaging studies have reported altered functional connectivity in ASD patients, with long-range under-connectivity seemingly more frequent. Our data suggest that CHD8 haploinsufficiency represents a specific subtype of ASD where neuropsychiatric symptoms are underpinned by long-range over-connectivity.
Truncating CHD8 mutations are amongst the highest confidence risk factors for autism spectrum disorders (ASD) identified to date. Here, we report that Chd8 heterozygous mice display subtle brain hyperplasia shortly after birth, hypertelorism, early motor delay, pronounced hypoactivity and anomalous responses to social stimuli. Whereas gene expression in the neocortex is only mildly affected at mid-gestation, over 600 genes are differentially expressed in the early postnatal neocortex. Genes involved in cell adhesion and axon guidance are particularly prominent amongst the down-regulated transcripts. Restingstate functional MRI identified increased synchronised activity in cortico-hippocampal and auditory-parietal networks in Chd8 heterozygous mutant mice, implicating altered connectivity as a potential mechanism underlying the behavioural phenotypes. Together, these data suggest that altered brain growth and diminished expression of important neurodevelopmental genes that regulate long-range brain wiring result in distinctive anomalies in functional brain connectivity in Chd8 +/-mice. Human imaging studies have consistently found evidence for changes in functional connectivity in ASD cohorts, most commonly long-range under-connectivity. Our data suggest that CHD8 haploinsufficiency represents a specific subtype of ASD where neuropsychiatric symptoms are underpinned by long-range over-connectivity.not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/143552 doi: bioRxiv preprint first posted online May. 29, 2017; 3 SIGNIFICANCE STATEMENTDe novo mutations in the chromatin remodeling factor CHD8 cause ASD with high penetrance, making CHD8 one of the leading ASD candidate genes. We established a Chd8 heterozygous mouse model that recapitulates anatomical phenotypes seen in patients with CHD8 haploinsufficiency and displays a unique complement of behavioural phenotypes.Increased functional connectivity observed in cortical and hippocampal areas suggests that neuropsychiatric phenotypes associated with CHD8 deficiency may be the result of distinct connectivity changes. Transcriptomic analyses highlighted dysregulation of axon guidance genes as a possible underlying mechanism. Together, our data suggest that CHD8 haploinsufficiency represents a distinct ASD subtype characterised by a unique set of anomalous behaviours, including increased responsiveness to social stimuli, and functional connectivity changes in mice.not peer-reviewed)
Background CHD8 haploinsufficiency causes autism and macrocephaly with high penetrance in the human population. Chd8 heterozygous mice exhibit relatively subtle brain overgrowth and little gene expression changes in the embryonic neocortex. The purpose of this study was to generate new, sub-haploinsufficient Chd8 mouse models to allow us to identify and study the functions of CHD8 during embryonic cortical development. Methods To examine the possibility that certain phenotypes may only appear at sub-heterozygous Chd8 levels in the mouse, we created an allelic series of Chd8-deficient mice to reduce CHD8 protein levels to approximately 35% (mild hypomorph), 10% (severe hypomorph) and 0% (neural-specific conditional knockout) of wildtype levels. We used RNA sequencing to compare transcriptional dysregulation, structural MRI and brain weight to investigate effects on brain size, and cell proliferation, differentiation and apoptosis markers in immunostaining assays to quantify changes in neural progenitor fate. Results Mild Chd8 hypomorphs displayed significant postnatal lethality, with surviving animals exhibiting more pronounced brain hyperplasia than heterozygotes. Over 2000 genes were dysregulated in mild hypomorphs, including autism-associated neurodevelopmental and cell cycle genes. We identify increased proliferation of non-ventricular zone TBR2+ intermediate progenitors as one potential cause of brain hyperplasia in these mutants. Severe Chd8 hypomorphs displayed even greater transcriptional dysregulation, including evidence for p53 pathway upregulation. In contrast to mild hypomorphs, these mice displayed reduced brain size and increased apoptosis in the embryonic neocortex. Homozygous, conditional deletion of Chd8 in early neuronal progenitors resulted in pronounced brain hypoplasia, partly caused by p53 target gene derepression and apoptosis in the embryonic neocortex. Limitations Our findings identify an important role for the autism-associated factor CHD8 in controlling the proliferation of intermediate progenitors in the mouse neocortex. We propose that CHD8 has a similar function in human brain development, but studies on human cells are required to confirm this. Because many of our mouse mutants with reduced CHD8 function die shortly after birth, it is not possible to fully determine to what extent reduced CHD8 function results in autism-associated behaviours in mice. Conclusions Together, these findings identify important, dosage-sensitive functions for CHD8 in p53 pathway repression, neurodevelopmental gene expression and neural progenitor fate in the embryonic neocortex. We conclude that brain development is acutely sensitive to reduced CHD8 expression and that the varying sensitivities of different progenitor populations and cellular processes to CHD8 dosage result in non-linear effects on gene transcription and brain growth. Shaun Hurley, Conor Mohan and Philipp Suetterlin have contributed equally to this work.
growth, this observation suggests that human brain development might be more sensitive to CHD8 deficiency than the mouse. We conclude that brain development is acutely sensitive to CHD8 dosage and that the varying sensitivities of different progenitor populations and cellular processes to CHD8 dosage can result in non-linear effects on gene transcription and brain growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.