The world's tropical reef ecosystems, and the people who depend on them, are increasingly 60 impacted by climate change [1][2][3][4][5][6][7] Reef, as well as the potential influence of water quality and fishing pressure on the severity of 71 bleaching. 72The geographic footprints of mass bleaching of corals on the Great Barrier Reef have varied 73 strikingly during three major events in 1998 , 2002 and 2016). In 1998, bleaching was 74 primarily coastal and most severe in the central and southern regions. In 2002, bleaching was 75 more widespread, and affected offshore reefs in the central region that had escaped in 1998 8 . 76In 2016, bleaching was even more extensive and much more severe, especially in the 77 northern, and to a lesser extent the central regions, where many coastal, mid-shelf and 78 offshore reefs were affected (Fig. 1a, b). In 2016, the proportion of reefs experiencing 79 extreme bleaching (>60% of corals bleached) was over four times higher compared to 1998 80 or 2002 (Fig. 1f) The severity and distinctive geographic footprints of bleaching in each of the three 88 years can be explained by differences in the magnitude and spatial distribution of sea-surface 89 temperature anomalies (Fig. 1a, b 102The geographic pattern of bleaching also demonstrates how marine heatwaves can be (Fig. 2a) (Fig. 1g). largely escaped bleaching in the two earlier events (Fig. 1a). Thirty-five percent of the reefs (Fig. 1b, e). We conclude that the overlap of disparate geographic bleaching at the scale of both individual reefs and the entire Great Barrier Reef (Fig. 1a, b). 134We found a similar strong relationship between the amount of bleaching measured 135 underwater, and the satellite-based estimates of heat exposure on individual reefs (Fig. 3). 136Low levels of bleaching was observed at some locations when DHW values were only 2-3 137 o C-weeks. Typically, 30-40% of corals bleached on reefs exposed to 4 o C-weeks, whereas an 138 average of 70-90% of corals bleached on reefs that experience 8 o C-weeks or more (Fig. 3). 139Resistance and adaptation to bleaching 140 Once we account for the amount of heat stress experienced on each reef, adding 141 chlorophyll-a, a proxy for water quality, to our statistical model yielded no support for the 142 hypothesis that good water quality confers resistance to bleaching 13 . Rather, the estimated 143 effect of chlorophyll-a was to significantly reduce the DHW threshold for bleaching 144 (Extended Data Table 1). However, despite the statistical significance, the effect in real terms 145 beyond heat stress alone is very small (Extended Data Fig. 1). Similarly, we found no effect 146 of the level of protection (in fished or protected zones) on bleaching (P > 0.1: Extended Data 147 Table 1). These results are consistent with the broad-scale pattern of severe bleaching in the 148 northern Great Barrier Reef, which affected hundreds of reefs across inshore-offshore 149 gradients in water quality, and regardless of their zoning (protection) status (Fig. 1a, b). 150Simila...
Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño-Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.
Rapid collapse of extensive kelp forests and a regime shift to tropicalized temperate reefs followed extreme heatwaves and decades of gradual warming. Abstract:Ecosystem reconfigurations arising from climate driven changes in species distributions are expected to have profound ecological, social and economic implications. Here, we reveal a rapid climate driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. Following decades of ocean warming, extreme marine heatwaves forced a 100 km range contraction of extensive kelp forests, and saw temperate species replaced by seaweeds, invertebrates, corals and fishes characteristic of subtropical and tropical waters. This community wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. Main Text:Broad scale losses of species which provide the foundations for habitats cause dramatic shifts in ecosystem structure because they support core ecological processes (1-3). Such habitat loss can lead to a regime shift where reinforcing feedback mechanisms intensify to provide resilience to an alternate community configuration, often with profound ecological, social and economic consequences (4-6). Benthic marine regime shifts have been associated with the erosion of ecological resilience through overfishing or eutrophication, altering the balance between consumers and resources, rendering ecosystems vulnerable to major disturbances (1, 2,6,7). Now, climate change is also contributing to the erosion of resilience (8,9), where increasing temperatures are modifying key physiological, demographic and community scale processes (8, 10), driving species redistribution at a global scale and rapidly breaking down long-standing biogeographic boundaries (11,12). These processes culminate in novel ecosystems where tropical and temperate species interact with unknown implications (13). Here we document how a marine heatwave caused the loss of kelp forests across ~2,300 km 2 of Australia's Great Southern Reef, forcing a regime shift to seaweed turfs. We demonstrate a rapid 100 km rangecontraction of kelp forests and a community-wide shift toward tropical species with ecological processes suppressing kelp forest recovery.To document ecosystem changes we surveyed kelp forests, seaweeds, fish, mobile invertebrates and corals at 65 reefs across a ~2,000 km tropical to temperate transition zone in western Australia (14). Surveys were conducted between 2001 to 2015, covering the years before and after an extreme marine heatwave impacted the region.The Indian Ocean adjacent to western Australia is a 'hotspot' where the rate of ocean warming is in the top 10% globally (15), and isotherms are shifting poleward at a rate of 20 -50 km per decade (16). Until recently, kelp forests were dominant along >800 km of the west coast (8), covering 2,266 km 2 of rocky reefs between 0 -30 m depth south of 27.7°S (Fig. 1). Kelp forests along the midwest section of this ...
Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.