The success of investors in obtaining huge financial rewards from the stock market depends on their ability to predict the direction of the stock market index. The purpose of this study is to evaluate the efficacy of several ensemble prediction models (Boosted, RUS-Boosted, Subspace Disc, Bagged, and Subspace KNN) in predicting the daily direction of the Johannesburg Stock Exchange (JSE) All-Share index compared to other commonly used machine learning techniques including support vector machines (SVM), logistic regression and [Formula: see text]-nearest neighbor (KNN). The findings in this study show that, among all ensemble models, Boosted algorithm is the best performer followed by RUS-Boosted. When compared to the other techniques, ensemble technique (represented by Boosted) outperformed these techniques, followed by KNN, logistic regression and SVM, respectively. These findings suggest that investors should include ensemble models among the index prediction models if they want to make huge profits in the stock markets. However, not all investors can benefit from this as models may suffer from alpha decay as more and more investors use them, implying that the successful algorithms have limited shelf life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.