Abstract-Demand of reliable computing has been a major concern since the dawn of the electronic digital computer age. Reliable computing has various applications not only in the field of military, aerospace and communication but even contemporary commercial applications to fulfill today's automated life style. The tremendous growth in fabrication from small scale integration (SSI) to giant scale integration (GSI) is facing power dissipation as one of the main barriers. To overcome this barrier, researchers need to enter into the reversible logic domain. Making a reversible circuit robust or fault tolerant is much more difficult than a conventional logic circuit. Fault tolerance can be achieved in a system by using parity bits. The main aim of this paper is to come up with a new fault tolerant ALU design based on parity preserving reversible logic gates with improved quantum cost and power overhead as compare to existing fault tolerance based ALU designs. The most stringent requirement for fault tolerant ALU is in real time control system where faulty computation jeopardizes human life or other catastrophic effects.Implentation of proposed design is done using Xilinx ISE design suit 14.2 tool and its performance over existing ALU designs is qualitatively analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.