The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations.
Summary In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved.
Driver mutations alter cells from normal to cancer through several evolutionary epochs: premalignancy, early malignancy, subclonal diversification, metastasis and resistance to therapy. Later stages of disease can be explored through analyzing multiple samples collected longitudinally, on or between successive treatments, and finally at time of autopsy. It is also possible to study earlier stages of cancer development through probabilistic reconstruction of developmental trajectories based on mutational information preserved in the genome. Here we present a suite of tools, called Phylogic N-Dimensional with Timing (PhylogicNDT), that statistically model phylogenetic and evolutionary trajectories based on mutation and copy-number data representing samples taken at single or multiple time points. PhylogicNDT can be used to infer: (i) the order of clonal driver events (including in pre-cancerous stages); (ii) subclonal populations of cells and their phylogenetic relationships; and (iii) cell population dynamics. We demonstrate the use of PhylogicNDT by applying it to whole-exome and whole-genome data of 498 lung adenocarcinoma samples (434 previously available and 64 of newly generated data). We identify significantly different progression trajectories across subtypes of lung adenocarcinoma (EGFR mutant, KRAS mutant, fusion-driven and EGFR/KRAS wild type cancers). In addition, we study the progression of fusiondriven lung cancer in 21 patients by analyzing samples from multiple timepoints during treatment with 1st and next generation tyrosine kinase inhibitors. We characterize their subclonal diversification, dynamics, selection, and changes in mutational signatures and neoantigen load. This methodology will enable a systematic study of tumour initiation, progression and resistance across cancer types and therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.