Resistive random access memory (ReRAM) has been considered the most promising next-generation nonvolatile memory. In recent years, the switching behavior has been widely reported, and understanding the switching mechanism can improve the stability and scalability of devices. We designed an innovative sample structure for in situ transmission electron microscopy (TEM) to observe the formation of conductive filaments in the Pt/ZnO/Pt structure in real time. The corresponding current-voltage measurements help us to understand the switching mechanism of ZnO film. In addition, high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) have been used to identify the atomic structure and components of the filament/disrupted region, determining that the conducting paths are caused by the conglomeration of zinc atoms. The behavior of resistive switching is due to the migration of oxygen ions, leading to transformation between Zn-dominated ZnO(1-x) and ZnO.
A high-entropy alloy (HEA) has been defined by us to have at least five principal elements, each of which has an atomic concentration between 5% and 35%. In the exploration on this new alloy field, we find that HEAs are quite simple to analyze and control, and they might be processed as traditional alloys. There exist many opportunities to create novel alloys, better than traditional ones in a wide range of applications. In this paper, we review the basic microstructural features of HEAs and discuss the mechanisms of formation. Instead of multiple intermetallic phases, the HEAs tend to form simple solid solution phases mainly of cubic crystal structure, especially at elevated temperatures. This tendency is explained by the high entropy effect based on the simple relation: (Gmix = (Hmix – T(Smix, and the second law of thermodynamics. Moreover, nanostructures and amorphous phases are easily formed in HEAs. This tendency is explained by kinetics theory as due to slow atomic diffusion.
Alternative approaches to treating subcutaneous abscesses—especially those associated with antibiotic‐resistant pathogenic bacterial strains—that eliminate the need for antibiotics are urgently needed. This work descibes a chitosan (CS) derivative with self‐doped polyaniline (PANI) side chains that can self‐assemble into micelles in an aqueous environment and be transformed into colloidal gels in a process that is driven by a local increase in pH. These self‐doped PANI micelles can be utilized as nano‐localized heat sources, remotely controllable using near‐infrared (NIR) light. To test the in vivo efficacy of the CS derivative as a photothermal agent, an aqueous solution thereof is directly injected at the site of infected abscesses in a mouse model. The injected polymer solution eventually becomes distributed over the acidic abscesses, forming colloidal gels when it meets the boundaries of healthy tissues. After treatment with an 808 nm laser, the colloidal gels convert NIR light into heat, causing the thermal lysis of bacteria and repairing the infected wound without leaving residual implanted materials. This approach has marked potential because it can provide colloidal gels with tunable spatial stability, limiting localized heating to the infected sites, and reducing thermal damage to the surrounding healthy tissues.
BackgroundHigh tibial osteotomy (HTO) with a medial opening wedge has been used to treat medial compartment osteoarthritis. However, this makes the proximal tibia a highly unstable structure and causes plate and screws to be the potentials sources for mechanical failure. Consequently, proper design and use of the fixation device are essential to the HTO especially for overweight or full weight-bearing patients.MethodsBased on the CT-based images, a tibial finite-element model with medial opening was simulated and instrumented with one-leg and two-leg plate systems. The construct was subjected to physiological and surgical loads. Construct stresses and wedge micromotions were chosen as the comparison indices.ResultsThe use of locking screws can stabilize the construct and decrease the implant and bone stresses. Comparatively, the two-leg design provides a wider load-sharing base to form a force-couple mechanism that effectively reduces construct stresses and wedge micromotions. However, the incision size, muscular stripping, and structural rigidity are the major concerns of using the two-leg systems. The one-leg plates behave as the fulcrum of the leverage system and make the wedge tip the zone of tension and thus have been reported to negatively affect the callus formation.ConclusionsThe choice of the HTO plates involved the trade-off between surgical convenience, construct stability, and stress-shielding effect. If the stability of the medial opening is the major concern, the two-leg system is suggested for the patients with heavy load demands and greater proximal tibial size. The one-leg system with locking screws can be used for the majority of the patients without heavy bodyweight and poor bone quality.
Due to its potential applications in biotechnology, ion current rectification (ICR) arising from the asymmetric nature of ion transport in a nanochannel has drawn the attention of researchers in various fields. Previous studies usually neglect the effects of osmotic and electroosmotic flows. In this study, a more general model taking account of these effects is adopted to describe the ICR behavior of a conical nanopore. The influences of the cone angle, surface charge density, and bulk salt concentration on this behavior are investigated, and mechanisms proposed to explain the results are obtained. We show that if the cone angle is enlarged by fixing the nanopore tip radius and raising its base radius, the ICR ratio has a local maximum. This behavior may not present if the cone angle is enlarged by fixing the nanopore base radius and raising its tip radius. The local maximum in the ICR ratio does not exist if the bulk salt concentration is sufficiently low or sufficiently high. This ratio also has a local maximum as the surface charge density varies, and the larger the cone angle, the higher the surface charge density at which the local maximum in the ICR ratio occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.