Amyloid-β peptide (Aβ) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Aβ induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Aβ-induced OLG death, examining the potential role of ceramide, a known apoptogenic mediator. Both Aβ and ceramide induced OLG death. In addition, Aβ activated neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase, resulting in increased ceramide generation. Blocking ceramide degradation with N-oleoyl-ethanolamine exacerbated Aβ cytotoxicity; and addition of bacterial sphingomyelinase (mimicking cellular nSMase activity) induced OLG death. Furthermore, nSMase inhibition by 3-O-methyl-sphingomyelin or by gene knockdown using antisense oligonucleotides attenuated Aβ-induced OLG death. Glutathione (GSH) precursors inhibited Aβ activation of nSMase and prevented OLG death, whereas GSH depletors increased nSMase activity and Aβ-induced death. These results suggest that Aβ induces OLG death by activating the nSMase–ceramide cascade via an oxidative mechanism.
Cytokines, including tumor necrosis factor-␣ (TNF-␣), may elicit cytotoxic response through the sphingomyelin-ceramide signal transduction pathway by activation of sphingomyelinases and the subsequent release of ceramide: the universal lipid second messenger. Treatment of bovine cerebral endothelial cells (BCECs) with TNF-␣ for 16 h followed by cycloheximide (CHX) for 6 h resulted in an increase in ceramide accumulation, DNA fragmentation, and cell death. Application of a cell permeable ceramide analogue C 2 ceramide, but not the biologically inactive C 2 dihydroceramide, also induced DNA laddering and BCEC death in a concentration-and time-dependent manner. TNF-␣/CHX-mediated ceramide production apparently is not a result of sphingomyelin hydrolysis because sphingomyelin content does not decrease in this death paradigm. In addition, an acidic sphingomyelinase inhibitor, desipramine, had no effect on TNF-␣/CHX-induced cell death. However, addition of fumonisin B1, a selective ceramide synthase inhibitor, attenuated TNF-␣/CHX-induced intracellular ceramide elevation and BCEC death. Together, these findings suggest that ceramide plays at least a partial role in this paradigm of BCEC death. Our results show, for the first time, that ceramide derived from de novo synthesis is an alternative mechanism to sphingomyelin hydrolysis in the BCEC death process initiated by TNF-␣/CHX.
Secondary tissue damage after spinal cord injury (SCI) may be due to inflammatory mediators. After SCI, the nuclear factor-kappaB (NF-kappaB) transcription factor can activate many pro-inflammatory genes, one of which is inducible nitric oxide synthase (iNOS). iNOS catalyzes the synthesis of nitric oxide (NO), a key inflammatory mediator, which in turn reacts with superoxide to generate peroxynitrite. Peroxynitrite is a strong oxidant that can damage cellular enzymes, membranes, and subcellular organelles through the nitration of tyrosine residues on proteins. The presence of nitrotyrosine (NT) is an indirect chemical indicator of toxic NO and peroxynitrite-induced cellular damage. Using a New York University (NYU) impactor to induce SCI in adult rats, we examined the temporal and cellular expression of iNOS and NT. We observed a progressive increase in iNOS expression in the injured cord starting at day 1 with maximal expression occurring at day 7, as determined by Western blot analysis. iNOS expression corresponded temporally to an increase in iNOS enzyme activity after SCI. In parallel with the progressive increase in iNOS activity, NT expression also increased with time after SCI. The iNOS and NT immunoreactivity was localized in neurons, astrocytes, endothelial cells and ependymal cells at the epicenter and adjacent to the region of spinal cord impact and injury. Results from the present study suggest that increased iNOS and peroxynitrite anion, as reflected by the progressive accumulation of NT in the injured impacted spinal cord, may contribute to the secondary injury process after SCI.
We examined the potential role of the extra-cellular matrix-degrading enzyme, matrix metalloproteinase-9 (MMP-9), in the pathogenesis of cerebral amyloid angiopathy (CAA)-induced spontaneous hemorrhage. The amyloid-beta peptide (Abeta) induced the synthesis, release and activation of MMP-9 in murine cerebral endothelial cells, resulting in increased extracellular matrix degradation. Furthermore, extensive MMP-9 immunoreactivity was observed in CAA-vessels with evidence of microhemorrhage in aged APPsw transgenic mice, but not detected in aged wild type or young APPsw mice. These results suggest that increased vascular MMP-9 expression, stimulated by Abeta, may play a role in the pathogenesis of spontaneous intracerebral hemorrhage in patients with CAA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.