We have previously shown that a 'reversed chloroquine (RCQ)' molecule, composed of a chloroquine-like moiety and a resistance reversal-like moiety, can overcome chloroquine resistance in P. falciparum (Burgess, S. J.; Selzer, A.; Kelly, J. X.; Smilkstein, M. J.; Riscoe, M. K.; Peyton, D. H. J. Med. Chem. 2006, 49, 5623; Andrews, S.; Burgess, S. J.; Skaalrud, D.; Kelly, J. X.; Peyton, D. H. J. Med. Chem. 2010, 53, 916). Here, we present an investigation into the structure-activity relationship of the RCQ structures, resulting in an orally active molecule with good in vitro and in vivo antimalarial activity. We also present evidence of the mode of action, indicating that the RCQ molecules inhibit hemozoin formation in the parasite’s digestive vacuole in a manner similar to that of chloroquine.
Building on our earlier work of attaching a chemosensitizer (reversal agent) to a known drug pharmacophore, we have now expanded the structure-activity relationship study to include simplified versions of the chemosensitizer. The change from two aromatic rings in this head group to a single ring does not appear to detrimentally affect the antimalarial activity of the compounds. Data from in vitro heme binding and β-hematin inhibition assays suggest that the single aromatic RCQ compounds retain activities against Plasmodium falciparum similar to those of CQ, although other mechanisms of action may be relevant to their activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.