Molecular doping is a powerful method to fine-tune the thermoelectric properties of organic semiconductors, in particular to impart the requisite electrical conductivity. The incorporation of molecular dopants can, however, perturb the microstructure of semicrystalline organic semiconductors, which complicates the development of a detailed understanding of structure-property relationships. To better understand how the doping pathway and the resulting dopant counterion influence the thermoelectric performance and transport properties, a new dimer dopant, (N-DMBI) 2 , is developed. Subsequently, FBDPPV is then n-doped with dimer dopants (N-DMBI) 2 , (RuCp*mes) 2 , and the hydride-donor dopant N-DMBI-H. By comparing the UV-vis-NIR absorption spectra and morphological characteristics of the doped polymers, it is found that not only the doping mechanism, but also the shape of the counterion strongly influence the thermoelectric properties and transport characteristics. (N-DMBI) 2 , which is a direct electron-donating dopant with a comparatively small, relatively planar counterion, gives the best power factor among the three systems studied here. Additionally, temperature-dependent conductivity and Seebeck coefficient measurements differ between the three dopants with (N-DMBI) 2 yielding the best thermoelectric properties.
This study reports on the thermoelectric properties of poly(3‐alkylchalcogenophene) thin films (500 nm) as a function of heteroatom (sulfur, selenium, tellurium), and how these properties change with dopant (ferric chloride) concentration. UV–vis–NIR spectroscopy shows that polaronic charge carriers are formed upon doping. Poly(3‐alkyltellurophene) (P3RTe) is most easily doped followed by poly(3‐alkylselenophene) (P3RSe) and poly(3‐alkylthiophene) (P3RT), where R = 3,7‐dimethyloctyl chain is the pendant alkyl group. Thermoelectric properties vary as functions of the heteroatom and doping level. At low dopant concentrations (≈1 × 10−3 m), P3RTe shows the highest power factor of 10 µW m−1 K−2, while, at higher dopant concentrations (≈5 × 10−3 m), P3RSe shows the highest power factor of 13 µW m−1 K−2. Most notably, it is found that the measured properties are consistent with Mott's polaron hopping model and not consistent with other transport models. Additionally, temperature‐dependent conductivity measurements show that for a given dopant concentration, the activation energies for electronic transport decrease as the heteroatom is changed from sulfur to selenium to tellurium. Overall, this work presents a systematic study of poly(chalcogenophenes) and indicates the potential of polymers beyond P3HT by tuning the heteroatom and doping level for optimized thermoelectric performance.
The processability and electronic properties of conjugated polymers (CPs) have become increasingly important due to the potential of these materials in redox and solid-state devices for a broad range of applications. To solubilize CPs, side chains are needed, but such side chains reduce the relative fraction of electroactive material in the film, potentially obstructing π−π intermolecular interactions, localizing charge carriers, and compromising desirable optoelectronic properties. To reduce the deleterious effects of side chains, we demonstrate that postprocessing side chain removal, exemplified here via ester hydrolysis, significantly increases the electrical conductivity of chemically doped CP films. Beginning with a model system consisting of an ester functionalized ProDOT copolymerized with a dimethylProDOT, we used a variety of methods to assess the changes in polymer film volume and morphology upon hydrolysis and resulting active material densification. Via a combination of electrochemistry, X-ray photoelectron spectroscopy, and charge transport models, we demonstrate that this increase in electrical conductivity is not due to an increase in degree of doping but an increase in charge carrier density and reduction in carrier localization that occurs due to side chain removal. With this improved understanding of side chain hydrolysis, we then apply this method to high-performance ProDOT-alt-EDOT x copolymers. After hydrolysis, these ProDOT-alt-EDOT x copolymers yield exceptional electrical conductivities (∼700 S/cm), outperforming all previously reported oligoether-/glycol-based CP systems. Ultimately, this methodology advances the ability to solution process highly electrically conductive CP films.
Heteroatom substitution is one promising way to favorably alter electronic transport in conductive polymers to improve their performance in thermoelectric devices. This study reports the spectroscopic, structural, and thermoelectric properties of poly (3-(3',7'-dimethyloctyl) chalcogenophenes) (P3RX) doped with 2, 3,5,7,8,, where the doping methodology, the heteroatom (X = Thiophene (T), Selenophene (Se), Tellurophene (Te)) and the extent of doping are systematically varied. Spectroscopic measurements reveal that while all P3RX polymers are appreciably doped, the doping mechanism is inherently different between the polymers. Poly(3-hexylthiophene) (P3HT, used in this study as a control) and P3RTe doped primarily via integer charge transfer (ICT), whereas P3RSe and P3RT appear to be doped via charge-transfer complex (CTC) mechanisms. Despite these differences, all polymers saturate with roughly the same number of F4TCNQ counterions (1 dopant per 4 to 6 heterocycles), reinforcing the idea that the extent of charge transfer from polymer to dopant varies significantly on the preferred doping mechanism. Grazing incidence wide-angle X-ray scattering measurements provide insight into the structural driving forces behind these different doping mechanisms -P3RT and P3RSe have similar microstructures in which F4TCNQ intercalates between the π-stacked backbones resulting in CTC doping (localized charge carriers), while P3HT and P3RTe have microstructures in which F4TCNQ intercalates in the alkyl-side chain region, giving rise to ICT doping (delocalized charge carriers). These structural and spectroscopic observations shed light on why P3HT and P3RTe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.