We use a micrometer-scale optical beam deflection technique to measure the thermodiffusion coefficient D(T) at room temperature (approximately 24 degrees C) of dilute aqueous suspensions of charged polystyrene spheres with different surface functionalities. In solutions with large concentrations of monovalent salts, < or approximately = 100 mM, the thermodiffusion coefficients for 26 nm spheres with carboxyl functionality can be varied within the range -0.9 x 10(-7) cm2 s(-1) K(-1) < D(T) < 1.5 x 10(-7) cm2 s(-1) K(-1) by changing the ionic species in solution; in this case, D(T) is the product of the electrophoretic mobility mu(E) and the Seebeck coefficient of the electrolyte, S(e) = (Q(C)* - Q(A)*)/2eT, D(T) = -S(e) mu(E), where and are the single ion heats of transport of the cationic and anionic species, respectively. In low ionic strength solutions of LiCl, < or approximately = 5 mM, and particle concentrations < or approximately = 2 wt %, D(T) is negative, independent of particle concentration and independent of the Debye length; D(T) = -0.73 +/- 0.05 x 10(-7) cm2 s(-1) K(-1).
Measurements of particle flows driven by temperature gradients are conducted as a function of temperature on aqueous suspensions of polystyrene nanoparticles and proteins of T4 lysozyme and mutant variants of T4 lysozyme. The thermodiffusion coefficients are measured using a microfluidic beam deflection technique on suspensions with particle concentrations on the order of 1 vol %. At T < or ~ 20 degrees C, all of the nanoparticles studied migrate to the hot regions of the fluid; i.e., the thermodiffusion coefficient is negative. At higher temperature, T > or ~ 50 degrees C, the thermodiffusion coefficient is positive with a value consistent with the predictions of a theoretical model originally proposed by Derjaguin that is based on the enthalpy changes due to polarization of water molecules in the double layer.
We describe an optical beam deflection technique for measurements of the thermal diffusivity of fluid mixtures and suspensions of nanoparticles with a precision of better than 1%. Our approach is tested using the thermal conductivity of ethanol-water mixtures; in nearly pure ethanol, the increase in thermal conductivity with water concentration is a factor of 2 larger than predicted by effective medium theory. Solutions of C 60 -C 70 fullerenes in toluene and suspensions of alkanethiolate-protected Au nanoparticles were measured to maximum volume fractions of 0.6% and 0.35 vol %, respectively. We do not observe anomalous enhancements of the thermal conductivity that have been reported in previous studies of nanofluids; the largest increase in thermal conductivity we have observed is 1.3% ± 0.8% for 4 nm diam Au particles suspended in ethanol.
A comprehensive numerical and experimental investigation on micrometer-sized water droplet impact dynamics and evaporation on an unheated, flat, dry surface is conducted from the standpoint of spray-cooling technology. The axisymmetric time-dependent governing equations of continuity, momentum, energy, and species are solved. Surface tension, wall adhesion effect, gravitational body force, contact line dynamics, and evaporation are accounted for in the governing equations. The explicit volume of fluid (VOF) model with dynamic meshing and variable-time stepping in serial and parallel processors is used to capture the time-dependent liquid-gas interface motion throughout the computational domain. The numerical model includes temperature- and species-dependent thermodynamic and transport properties. The contact line dynamics and the evaporation rate are predicted using Blake's and Schrage's molecular kinetic models, respectively. An extensive grid independence study was conducted. Droplet impingement and evaporation data are acquired with a standard dispensing/imaging system and high-speed photography. The numerical results are compared with measurements reported in the literature for millimeter-size droplets and with current microdroplet experiments in terms of instantaneous droplet shape and temporal spread (R/D(0) or R/R(E)), flatness ratio (H/D(0)), and height (H/H(E)) profiles, as well as temporal volume (inverted A) profile. The Weber numbers (We) for impinging droplets vary from 1.4 to 35.2 at nearly constant Ohnesorge number (Oh) of approximately 0.025-0.029. Both numerical and experimental results show that there is air bubble entrapment due to impingement. Numerical results indicate that Blake's formulation provides better results than the static (SCA) and dynamic contact angle (DCA) approach in terms of temporal evolution of R/D(0) and H/D(0) (especially at the initial stages of spreading) and equilibrium flatness ratio (H(E)/D(0)). Blake's contact line dynamics is dependent on the wetting parameter (K(W)). Both numerical and experimental results suggest that at 4.5 < We < 11.0 the short-time dynamics of microdroplet impingement corresponds to a transition regime between two different spreading regimes (i.e., for We < or = 4.5, impingement is followed by spreading, then contact line pinning and then inertial oscillations, and for We > or = 11.0, impingement is followed by spreading, then recoiling, then contact line pinning and then inertial oscillations). Droplet evaporation can be satisfactorily modeled using the Schrage model, since it predicts both well-defined transient and quasi-steady evaporation stages. The model compares well with measurements in terms of flatness ratio (H/H(E)) before depinning occurs. Toroidal vortices are formed on the droplet surface in the gaseous phase due to buoyancy-induced Rayleigh-Taylor instability that enhances convection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.