Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC 50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-L-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd Ϸ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cellbased assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor-heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein-protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED 50 values of <2 mg͞kg in a rat model of endotoxininduced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies.T he mammalian nitric ox ide synthase (NOS) (EC 1.14.13.39) enzyme family comprises three isoforms: inducible (iNOS), neuronal, and endothelial NOS. NOS isoforms are homodimers that catalyze NADPH-dependent oxidation of L-arginine to NO⅐ and citrulline (1-3). NOS monomers consist of an oxidoreductase domain and an oxygenase domain. The reductase domain is homologous to cytochrome P450 reductase and contains binding sites for NADPH, FAD, and FMN (4, 5). The oxygenase domain has binding sites for L-arginine, the heme prosthetic group, and tetrahydrobiopterin (H 4 B). Formation of stable NOS homodimers requires structural elements in the oxygenase domain and is an H 4 B-, substrate-, and heme-dependent process (6 -8). Dimerization of NOS is required for fully coupled enzyme activity because the f low of electrons during catalysis occurs in trans from the reductase domain of one monomer subunit to the oxygenase domain of the other monomer (9). The crystal structures of oxygenase domains of murine iNOS monomer (10), murine and human iNOS dimer (11-13), and human and bovine endothelial NOS dimer (13, 14) indicate a high degree of structural similarity within the critical catalytic center and dimer interface regions between NOS isoforms.NO⅐ plays a pivotal role in the physiology and pathophysiology of the central nervous, cardiovascular, and immune systems (15-17). The reactivity of NO⅐ toward molecular oxygen, thiols, transition metal centers, and other biological targets enables NO⅐ to function both as a rapidly reversible, specific, and local signal transduction molecule as well as a nonspecific mediator of tissue damage (1...
By the screening of a combinatorial library for inhibitors of nitric oxide (NO) formation by the inducible isoform of nitric oxide synthase (iNOS) using a whole-cell assay, 2-(imidazol-1-yl)pyrimidines were identified. Compounds were found to inhibit the dimerization of iNOS monomers, thus preventing the formation of the dimeric, active form of the enzyme. Optimization led to the selection of the potent, selective, and orally available iNOS dimerization inhibitor, 21b, which significantly ameliorated adjuvant-induced arthritis in a rat model. Analysis of the crystal structure of the 21b--iNOS monomer complex provided a rationalization for both the SAR and the mechanism by which 21b blocks the formation of the protein--protein interaction present in the dimeric form of iNOS.
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel expressed in sensory neurons where it functions as an irritant sensor for a plethora of electrophilic compounds and is implicated in pain, itch, and respiratory disease. To study its function in various disease contexts, we sought to identify novel, potent, and selective small-molecule TRPA1 antagonists. Herein we describe the evolution of an N-isopropylglycine sulfonamide lead (1) to a novel and potent (4 R,5 S)-4-fluoro-5-methylproline sulfonamide series of inhibitors. Molecular modeling was utilized to derive low-energy three-dimensional conformations to guide ligand design. This effort led to compound 20, which possessed a balanced combination of potency and metabolic stability but poor solubility that ultimately limited in vivo exposure. To improve solubility and in vivo exposure, we developed methylene phosphate prodrug 22, which demonstrated superior oral exposure and robust in vivo target engagement in a rat model of AITC-induced pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.