Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology’s approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Little is known about how occipital lobe asymmetry, width, and height interact to contribute to the operculation of the posterior parietal lobe, despite the utility of knowing this for understanding the relative reduction in the size of the occipital lobe and the increase in the size of the posterior parietal lobe during human brain evolution. Here, we use linear measurements taken on 3D virtual brain surfaces obtained from 83 chimpanzees to study these traits as they apply to operculation of the posterior occipital parietal arcus or bridging gyrus. Asymmetry in this bridging gyrus visibility provides a unique opportunity to study both the human ancestral and human equivalently normal condition in the same individual. Our results show that all three traits (occipital lobe asymmetry, width, and height) are related to this operculation and bridging gyrus visibility but width and not height is the best predictor, against expectations, suggesting that relative reduction of the occipital lobe and exposure of the posterior parietal is a complex phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.