Cancers employ a number of mechanisms to evade host immune responses. Here we report the effects of tumor-shed antigen CA125/MUC16 on suppressing IgG1-mediated antibody-dependent cellular cytotoxicity (ADCC). This evidence stems from prespecified subgroup analysis of a Phase 3 clinical trial testing farletuzumab, a monoclonal antibody to folate receptor alpha, plus standard-of-care carboplatin-taxane chemotherapy in patients with recurrent platinum-sensitive ovarian cancer. Patients with low serum CA125 levels treated with farletuzumab demonstrated improvements in progression free survival (HR 0.49, p = 0.0028) and overall survival (HR 0.44, p = 0.0108) as compared to placebo. Farletuzumab’s pharmacologic activity is mediated in part through ADCC. Here we show that CA125 inhibits ADCC by directly binding to farletuzumab that in turn perturbs Fc-γ receptor engagement on effector cells.
Microtubule-targeting agents (MTA) have been investigated for many years as payloads for antibody-drug conjugates (ADC). In many cases, these ADCs have shown limited benefits due to lack of efficacy or significant toxicity, which has spurred continued investigation into novel MTA payloads for next-generation ADCs. In this study, we have developed ADCs using the MTA eribulin, a derivative of the macrocyclic polyether natural product halichondrin B, as a payload. Eribulin ADCs demonstrated in vitro potency and specificity using various linkers and two different conjugation approaches. MORAb-202 is an investigational agent that consists of the humanized anti-human folate receptor alpha (FRA) antibody farletuzumab conjugated via reduced interchain disulfide bonds to maleimido-PEG 2 -valine-citrulline-p-aminobenzylcarbamyl-eribulin at a drug-to-antibody ratio of 4.0. MORAb-202 displayed preferable biophysical properties and broad potency across a number of FRA-positive tumor cell lines as well as demonstrated improved specificity in vitro compared with farletuzumab conjugated with a number of other MTA payloads, including MMAE, MMAF, and the reducible maytansine linker-payload sulfo-SPDB-DM4. A single-dose administration of MORAb-202 in FRA-positive human tumor cell line xenograft and patient-derived tumor xenograft models elicited a robust and durable antitumor response. These data support further investigation of MORAb-202 as a potential new treatment modality for FRA-positive cancers, using the novel MTA eribulin as a payload. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis):
Over-expression of endosialin/CD248 (herein referred to as CD248) has been associated with increased tumor microvasculature in various tissue origins which makes it an attractive anti-angiogenic target. In an effort to target CD248, we have generated a human CD248 knock-in mouse line and MORAb-004, the humanized version of the mouse anti-human CD248 antibody Fb5. Here, we report that MORAb-004 treatment significantly impacted syngeneic tumor growth and tumor metastasis in the human CD248 knock-in mice. In comparison with untreated tumors, MORAb-004 treated tumors displayed overall shortened and distorted blood vessels. Immunofluorescent staining of tumor sections revealed drastically more small and dysfunctional vessels in the treated tumors. The CD248 levels on cell surfaces of neovasculature pericytes were significantly reduced due to its internalization. This reduction of CD248 was also accompanied by reduced α-SMA expression, depolarization of pericytes and endothelium, and ultimately dysfunctional microvessels. These results suggest that MORAb-004 reduced CD248 on pericytes, impaired tumor microvasculature maturation and ultimately suppressed tumor development.
The tumor-shed antigen CA125 has recently been found to bind certain monoclonal antibodies (mAbs) and suppress immune-effector mediated killing through perturbation of the Fc domain with CD16a and CD32a Fc-γ activating receptors on immune-effector cells. Amatuximab is a mAb targeting mesothelin whose mechanism of action utilizes in part antibody-dependent cellular cytotoxicity (ADCC). It is being tested for its therapeutic activity in patients with mesothelioma in combination with first line standard-of-care. To determine if CA125 has immunosuppressive effects on amatuximab ADCC and associated clinical outcomes, post hoc subgroup analysis of patients from a Phase 2 study with primary diagnosed stage III/IV unresectable mesothelioma treated with amatuximab plus cisplatin and pemetrexed were conducted. Analysis found patients with baseline CA125 levels no greater than 57 U/m (∼3X the upper limit of normal) had a 2 month improvement in progression free survival (HR = 0.43, p = 0.0062) and a 7 month improvement in overall survival (HR = 0.40, p = 0.0022) as compared to those with CA125 above 57 U/mL. In vitro studies found that CA125 was able to bind amatuximab and perturb ADCC activity via decreased Fc-γ-receptor engagement. These data suggest that clinical trial designs of antibody-based drugs in cancers producing CA125, including mesothelioma, should consider stratifying patients on baseline CA125 levels for mAbs that are experimentally determined to be bound by CA125.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.