Coastal erosion outpaces land generation along many of the world’s deltas and a significant percentage of shorelines, and human-caused alterations to coastal sediment budgets can be important drivers of this erosion. For sediment-starved and erosion-prone coasts, large-scale enhancement of sediment supply may be an important, but poorly understood, management option. Here we provide new topographic measurements that show patterns and trends of beach accretion following the restoration of sediment supply from a massive dam removal project. River sediment was initially deposited in intertidal-to-subtidal deltaic lobes, and this sediment was reworked by ocean waves into subaerial river mouth bars over time scales of several months. These river mouth bars welded to the shoreline and then initiated waves of sediment accretion along adjacent upcoast and downcoast beaches. Although the downcoast shoreline has a high wave-angle setting, the sedimentation waves straightened the downcoast shoreline rather than forming self-organized quasi-periodic instabilities, which suggests that simple coastal evolution theory did not hold under these conditions. Combined with other mega-nourishment projects, these findings provide new understanding of littoral responses to the restoration of sediment supplies.
We develop an optical wave gauging technique to estimate wave height and period from imagery of waves in the surf zone. In this proof-of-concept study, we apply the same framework to three datasets: the first, a set of close-range monochrome infrared (IR) images of individual nearshore waves at Duck, NC, USA; the second, a set of visible (i.e. RGB) band orthomosaics of a larger nearshore area near Santa Cruz, CA, USA; and the third, a set of oblique (unrectified) images from the same site. The network is trained using coincident images and in situ wave measurements. The optical wave gauge (OWG) consists of a deep convolutional neural network (CNN) to extract features from imagery-called a 'base model', with additional layers to distill the feature information into lower dimensional spaces, and a final layer of dense neurons to predict continuously varying quantities. Four base models are compared. The OWG is trained for both individual wave height and period, and statistical quantities like significant wave height and peak wave period. The best performing OWG on the IR dataset achieved RMS errors of 0.14 m and 0.41 s for height and period, respectively, capturing up to 98% of the variance in these quantities. The best performing OWG on the visible band rectified dataset achieved RMS errors of 0.08 m and 0.79 s, respectively, for height and period. The same values for the oblique RGB imagery were 0.11 m and 0.81 s for height and period, respectively. Overall, wave height and period accuracy is sensitive to choice of base model; OWGs built upon MobilenetV2 tend to perform worst and those built on Inception-ResnetV2 have the smallest RMS error. The presence or otherwise of residual layers in the model makes little systematic difference to the final OWG accuracy. Smaller batch sizes used in model training tend to result in more accurate OWGs. An out-of-calibration validation, using images associated with wave heights or periods outside the range of values represented in the training data, showed that the ability for OWGs to predict the the bottom 5% of low wave heights and the top 5% of high wave heights was reasonably good, but the same was not generally true of wave period. The same framework, not optimized for either dataset, predicts both quantities with high accuracy when trained on imagery, despite the differences in electromagnetic band, perspective, and scale. The OWG estimates wave properties from an image in less than 100 milliseconds on a modestly sized CPU, allowing for the possibility of continuous real-time wave estimates.
We develop a remote wave gauging technique to estimate wave height and period from imagery of waves in the surf zone. In this proof-of-concept study, we apply the same framework to three datasets: the first, a set of close-range monochrome infrared (IR) images of individual nearshore waves at Duck, NC, USA; the second, a set of visible (i.e. RGB) band orthomosaics of a larger nearshore area near Santa Cruz, CA, USA; and the third, a set of oblique (unrectified) images from the same site. The network is trained using coincident images and in situ wave measurements. The optical wave gauge (OWG) consists of a deep convolutional neural network (CNN) to extract features from imagery — called a ‘base model’, with additional layers to distill the feature information into lower dimensional spaces, and a final layer of dense neurons to predict continuously varying quantities. Four base models are compared. The OWG is trained for both individual wave height and period, and statistical quantities like significant wave height and peak wave period. The best performing OWG on the IR dataset achieved RMS errors of 0.14 m and 0.41 s for height and period, respectively, capturing up to 98% of the variance in these quantities. The best performing OWG on the visible band rectified dataset achieved RMS errors of 0.08 m and 0.79 s, respectively, for height and period. The same values for the oblique RGB imagery were 0.11 m and 0.81 s for height and period, respectively. Overall, wave height and period accuracy is sensitive to choice of base model; OWGs built upon MobilenetV2 tend to perform worst and those built on Inception-ResnetV2 have the smallest RMS error. The presence or otherwise of residual layers in the model makes little systematic difference to the final OWG accuracy. Smaller batch sizes used in model training tend to result in more accurate OWGs. An out-of-calibration validation, using images associated with wave heights or periods outside the range of values represented in the training data, showed that the ability for OWGs to predict the bottom 5% of low wave heights and the top 5% of high wave heights was reasonably good, but the same was not generally true of wave period. The same framework, not optimized for either dataset, predicts both quantities with high accuracy when trained on imagery, despite the differences in electromagnetic band, perspective, and scale. The OWG estimates wave properties from an image in less than 100 ms on a modestly sized CPU, allowing for the possibility of continuous real-time wave estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.