Colloidal semiconductor nanoplatelets (NPLs) are a scalable materials platform for optoelectronic applications requiring fast and narrow emission, including spin-to-photon transduction within quantum information networks. In particular, three-particle negative trions of NPLs are appealing emitters since, unlike excitons, they do not have an optically "dark" sublevel. In CdSe NPLs, trion emission dominates the photoluminescence (PL) spectrum at low temperature but using them as single photon-emitting states requires more knowledge about their preparation, since trions in these materials are not directly optically accessible from the ground state. This work demonstrates, using powerdependent time-resolved transient absorptions (TA) of CdSe NPLs, that trions form via biexciton decay in 1.6 ps. The scaling of the trion population and formation lifetime with excitation power indicates that they do not form through collisional mechanisms typical for 2D materials, but rather by a unimolecular hole transfer. This work is a step toward deterministic single photon emission from trions.
The behavior of ions at aqueous interfaces influences vital processes in many fields but has long remained a subject of controversy. Over the past decade, counterintuitive surface concentration enhancement of several ions in aqueous solution has been demonstrated via nonlinear laser spectroscopy and mass spectrometry. While the evidence for significant ion enhancement at the air-water interface is convincing, the mechanism remains incompletely understood. Toward this end, we present the full broadband DUV-SFG spectrum of the charge-transfer-to-solvent (CTTS) band of interfacial aqueous iodide measured in a single laser shot with a newly developed broadband deep UV-SFG technique, clearly revealing a ∼8 nm redshift and a significant linewidth narrowing relative to bulk solution spectra. KI and NaI solutions yield indistinguishable results. Additionally, we observe a dramatic change in the relative intensities of the J = 3/2 and 1/2 CTTS transitions.
Fixing cells with paraformaldehyde (PFA) is an essential step in numerous biological techniques as it is thought to preserve a snapshot of biomolecular transactions in living cells. Fixed cell imaging techniques such as immunofluorescence have been widely used to detect liquid-liquid phase separation (LLPS) in vivo. Here, we compared images, before and after fixation, of cells expressing intrinsically disordered proteins that are able to undergo LLPS. Surprisingly, we found that PFA fixation can both enhance and diminish putative LLPS behaviors. For specific proteins, fixation can even cause their droplet-like puncta to artificially appear in cells that do not have any detectable puncta in the live condition. Fixing cells in the presence of glycine, a molecule that modulates fixation rates, can reverse the fixation effect from enhancing to diminishing LLPS appearance. We further established a kinetic model of fixation in the context of dynamic protein-protein interactions. Simulations based on the model suggest that protein localization in fixed cells depends on an intricate balance of protein-protein interaction dynamics, the overall rate of fixation, and notably, the difference between fixation rates of different proteins. Consistent with simulations, live-cell single-molecule imaging experiments showed that a fast overall rate of fixation relative to protein-protein interaction dynamics can minimize fixation artifacts. Our work reveals that PFA fixation changes the appearance of LLPS from living cells, presents a caveat in studying LLPS using fixation-based methods, and suggests a mechanism underlying the fixation artifact.
This paper describes reversible "on−off" switching of the photoluminescence (PL) intensity of CdSe quantum dots (QDs), mediated by photochromic furylfulgide carboxylate (FFC) molecules chemisorbed to the surfaces of the QDs. Repeated cycles of UV and visible illumination switch the FFC between "closed" and "open" isomers. Reversible switching of the QDs' PL intensity by >80% is enabled by different rates and yields of PL-quenching photoinduced electron transfer (PET) from the QDs to the respective isomers. This difference is consistent with cyclic voltammetry measurements and density functional calculations of the isomers' frontier orbital energies. This work demonstrates fatigue-resistant modulation of the PL of a QD-molecule complex through remote control of PET. Such control potentially enables applications, such as all-optical memory, sensing, and imaging, that benefit from a fast, tunable, and reversible response to light stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.