We estimate the velocity field in central and southern Calitbrnia using Global Positioning System (GPS) observations from 1986 to 1902 and very long baseline interferometry (VLB!) observations from 1984 to 1991. Our core network includes 12 GPS sites spaced approximately 50 km apart, mostly in the western Transverse Ranges and the coastal Borderlands. The precision and accuracy of the relative horizontal velocities estimated for these core stations are adequately described by a 05% confidence ellipse with a semiminor axis of approximately 2 mm/yr oriented roughly north-south, and a semimajor axis of approximately 3 mm/yr oriented east-west. For other stations, occupied fewer than 5 times, or occupied during experiments with poor tracking geometries, the uncertainty is larger. These uncertainties are calibrated by analyzing the scatter in three types of comparisons: (1) multiple measurements of relative position ("repeatability"), (2) independent velocity estimates from separate analyses of the GPS and VLBi data, and (3) rates of change in baseline length estimated t¾om the joint GPS+VLB! solution and from a comparison of GPS with trilateration. The dominant tectonic signature in the velocity field is shear deformation associated with the San Andreas and Garlock faults, which we model as resulting from slip below a given locking depth. Removing the effects of this simple model l¾om the observed velocity field reveals residual deformation that is not attributable to the San Andreas fault. Baselines spanning the eastern Santa Barbara Channel, the Ventura basin, the Los Angeles basin, and the Santa Maria Fold and Thrust Belt are shortening at rates of up to 5 _.+ I, 5 _.+ I, 5 _.+ 1, and 2 _.+ I mm/yr, respectively. North of Ihe Big Bend, some compression normal to the trace of the San Andreas fault can be resolved on both sides of the fault. The rates of rotation about vertical axes in the residual geodetic velocity field differ by up to a factor of 2 from those inferred from paleomagnctic declinations. Our estimates indicate that the "San Andreas discrepancy" can be resolved to within the 3 mm/yr uncertainties by accounting for deformation in California between Vandenberg (near Point Conception) and the westernmost Basin and Range. Strain accumulation of I-2 mm/yr on structures offshore of Vandenberg is also allowed by the uncertainties. South of the Transverse Ranges, the deformation budget must include 5 mm/yr between the ofl•horc islands and the mainland. INTRODU(q'!ONDetermining the velocity field in the vicinity of the Pacific-North America plate boundary in central and southern Calitbrnia (Figure 1) is a long-standing problem in tectonics. While most of the motion between these plates occurs on the San Andreas fault, the deformation extends for a substantial distance on either side of this structure. Such off-fault deformation is evident in geologic structures, seismicity, paleomagnetic declinations, and geodetic networks. Measuring that deformation with space geodesy is the primary objective of this study, w...
We propose a model for the effect of sedimentary basin depth on long-period response spectra. The model is based on the analysis of 3-D numerical simulations (finite element and finite difference) of long-period (2–10 s) ground motions for a suite of sixty scenario earthquakes (Mw 6.3 to Mw 7.1) within the Los Angeles basin region. We find depth to the 1.5 km/s S-wave velocity isosurface to be a suitable predictor variable, and also present alternative versions of the model based on depths to the 1.0 and 2.5 km/s isosurfaces. The resulting mean basin-depth effect is period dependent, and both smoother (as a function of period and depth) and higher in amplitude than predictions from local 1-D models. The main requirement for the use of the results in construction of attenuation relationships is determining the extent to which the basin effect, as defined and quantified in this study, is already accounted for implicitly in existing attenuation relationships, through (1) departures of the average “rock” site from our idealized reference model, and (2) correlation of basin depth with other predictor variables (such as V s30).
We simulate long-period (T > 1:0-2:0 s) and broadband (T > 0:1 s) ground motions for 39 scenario earthquakes (M w 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 M w 4.18 Oakland earthquake and the 2007 M w 5.45 Alum Rock earthquake show that the U.S. Geological Survey's Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period. Online Material: Comparison of ground-motion intensities from Hayward synthetics to NGA results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.