We present a statistical method for the prediction of protein-protein interactions within an organism. This approach is based on the treatment of proteins as collections of conserved domains, where each domain is responsible for a specific interaction with another domain. By characterizing the frequency with which specific domain-domain interactions occur within known interactions, our model can assign a probability to an arbitrary interaction between any two proteins with defined domains. Domain interaction data is complemented with information on the topology of a network and is incorporated into the model by assigning greater probabilities to networks displaying more biologically realistic topologies. We use Markov chain Monte Carlo techniques for the prediction of posterior probabilities of interaction between a set of proteins; allowing its application to large data sets. In this work we attempt to predict interactions in a set of 40 human proteins, known to form a connected network, and discuss methods for future improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.