In this work, we examine binary and ternary nanocomposites of poly(methyl methacrylate) grafted silica nanoparticles (PMMA-NP), in poly(styrene-ran-acrylonitrile) (SAN), and poly(methyl methacrylate) matrices as a platform to directly probe governing parameters guiding phase behavior and nanoparticle assembly in composite materials. Through the addition of PMMA matrix chains similar in molecular weight to the grafted PMMA chains and significantly smaller than the SAN matrix chains, we observe increased nanoparticle miscibility in off-critical compositions due to interfacial segregation of PMMA matrix chains. A simple interfacial model provides a general guideline for predicting the extent of compatibilization. Further insights on compatibilization behavior are provided by polymer particle pair correlation functions and structure factors obtained using Polymer Reference Interaction Site Model theory calculations as well as polymer concentration profiles from molecular dynamics simulations. This study serves as a guideline to facilitate PNC processing and design of materials for a broad range of technological applications.
Wetting of polymer-grafted nanoparticles (NPs) in a polymer nanocomposite (PNC) film is driven by a difference in surface energy between components as well as bulk thermodynamics, namely, the value of the interaction parameter, χ. The interplay between these contributions is investigated in a PNC containing 25 wt % polymethyl methacrylate (PMMA)-grafted silica NPs (PMMA-NPs) in poly(styrene-ran-acrylonitrile) (SAN) upon annealing above the lower critical solution temperature (LCST, 160 °C). Atomic force microscopy (AFM) studies show that the areal density of particles increases rapidly and then approaches 80% of that expected for random close-packed hard spheres. A slightly greater areal density is observed at 190 °C compared to 170 °C. The PMMA-NPs are also shown to prevent dewetting of PNC films under conditions where the analogous polymer blend is unstable. Transmission electron microscopy (TEM) imaging shows that PMMANPs symmetrically wet both interfaces and form columns that span the free surface and substrate interface. Using grazingincidence Rutherford backscattering spectrometry (GI-RBS), the PMMA-NP surface excess (Z*) initially increases rapidly with time and then approaches a constant value at longer times. Consistent with the areal density, Z* is slightly greater at deeper quench depths, which is attributed to the more unfavorable interactions between the PMMA brush and SAN segments. The Z* values at early times are used to determine the PMMA-NP diffusion coefficients, which are significantly larger than theoretical predictions. These studies provide insights into the interplay between wetting and phase separation in PNCs and can be utilized in nanotechnology applications where surface-dependent properties, such as wettability, durability, and friction, are important.
Understanding the kinetic pathways of self-assembly in block copolymers (BCPs) has been a long-standing challenge, mostly due to limitations of in situ monitoring techniques. Here, we demonstrate an approach that uses optical birefringence, determined by spectroscopic ellipsometry (SE), as a measure of domain formation in cylinder- and lamellae-forming BCP films. The rapid experimental acquisition time in SE (ca. 1 sec) enables monitoring of the assembly/disassembly kinetics of BCP films during solvent-vapor annealing (SVA). We demonstrate that upon SVA, BCP films form ordered domains that are stable in the swollen state, but disorder upon rapid drying. Surprisingly, the disassembly during drying strongly depends on the duration of solvent exposure in the swollen state, explaining previous observations of loss of order in SVA processes. SE thus allows for decoupling of BCP self-assembly and disordering that occurs during solvent annealing and solvent evaporation, which is difficult to probe using other, slower techniques.
Most research on polymer composites has focused on adding discrete inorganic nanofillers to a polymer matrix to impart properties not found in polymers alone. However, properties such as ion conductivity and mechanical reinforcement would be greatly improved if the composite exhibited an interconnected network of inorganic and polymer phases. Here, we fabricate bicontinuous polymer-infiltrated scaffold metal (PrISM) composites by infiltrating polymer into nanoporous gold (NPG) films. Polystyrene (PS) and poly(2-vinylpyridine) (P2VP) films are infiltrated into the ∼43 nm diameter NPG pores via capillary forces during thermal annealing above the polymer glass transition temperature (T g ). The infiltration process is characterized in situ using spectroscopic ellipsometry. PS and P2VP, which have different affinities for the metal scaffold, exhibit slower segmental dynamics compared to their bulk counterparts when confined within the nanopores, as measured through T g . The more attractive P2VP shows a 20 °C increase in T g relative to its bulk, while PS only shows a 6 °C increase at a comparable molecular weight. The infiltrated polymer, in turn, stabilizes the gold nanopores against temporal coarsening. The broad tunability of these polymer/metal hybrids represents a unique template for designing functional network composite structures with applications ranging from flexible electronics to fuel cell membranes.
We show that the polymer-grafted nanoparticles (NPs) initially welldispersed in a polymer matrix segregate to the free surface of a film upon thermal annealing in the one-phase region of the phase diagram because the grafted polymer has a lower surface energy than the matrix polymer. Using a combination of atomic force microscopy, transmission electron microscopy, and Rutherford backscattering spectrometry, the evolution of the poly(methyl methacrylate)-grafted silica NP (PMMA NP) surface excess in 25/75 wt % PMMA NP/poly(styrene-ranacrylonitrile) films is observed as a function of annealing time at 150 °C (T < T LCST ). The temporal growth of the surface excess is interpreted as a competition between entropic contributions, surface energy differences of the constituents, and the Flory−Huggins interaction parameter, χ. For the first time in a miscible polymer nanocomposite mixture, quantitative comparisons of NP surface segregation are made with the predictions of theory derived for analogous polymer blends. These studies provide insight for designing polymer nanocomposite films with advantageous surface properties such as wettability and hardness and motivate the need for developing rigorous models that capture complex polymer nanocomposite phase behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.