Chotikapanich and Griffiths (2002) introduced the Dirichlet distribution to the estimation of Lorenz curves. This distribution naturally accommodates the proportional nature of income share data and the dependence structure between the shares. Chotikapanich and Griffiths (2002) fit a family of five Lorenz curves to one year of Swedish and Brazilian income share data using unconstrained maximum likelihood and unconstrained non-linear least squares. We attempt to replicate the authors' results and extend their analyses using both constrained estimation techniques and five additional years of data. We successfully replicate a majority of the authors' results and find that some of their main qualitative conclusions also hold using our constrained estimators and additional data.
Summary
Chotikapanich and Griffiths (Journal of Business and Economic Statistics, 2002, 20(2), 290–295) introduced the Dirichlet distribution to the estimation of Lorenz curves. This distribution naturally accommodates the proportional nature of income share data and the dependence structure between the shares. Chotikapanich and Griffiths fit a family of five Lorenz curves to one year of Swedish and Brazilian income share data using unconstrained maximum likelihood and unconstrained nonlinear least squares. We attempt to replicate the authors' results and extend their analyses using both constrained estimation techniques and five additional years of data. We successfully replicate a majority of the authors' results and find that some of their main qualitative conclusions also hold using our constrained estimators and additional data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.