Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978–1995) and recent (1996–2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity.
151. The prevailing view that many humic lakes are net heterotrophic is commonly based on pelagic measurements alone. Poor light conditions in humic lakes are assumed to constrain littoral primary production (PP), such that the littoral zone has been considered an insignificant contributor to whole-lake PP. However, that assumption is based on models and inferences from pelagic processes which do not take littoral zone structure into account. 20Many lakes have an extensive ring of aquatic vegetation lying near the water surface, which provides substratum for epiphytic algae under well-illuminated conditions. 2. We measured both pelagic and littoral PP and community respiration (CR) in Mekkojärvi, a small, highly humic headwater lake, in southern Finland throughout the open water season in 2012. We used a 14 C incorporation technique to measure pelagic PP, while littoral PP was 25 determined using changes in dissolved inorganic carbon (DIC) concentrations during in situ incubations. We then estimated whole-lake PP and CR for both the littoral and pelagic zones.3. We found that littoral PP usually dominated whole-lake PP, contributing >90% to total PP in summer. A mean pelagic production to respiration ratio (GPP:CR) of 0.4 clearly indicated strong net heterotrophy, but a value of 2.2 for the littoral zone indicated strong autotrophy. 30For both habitats combined, the mean whole lake GPP:CR was 1.6, indicating net autotrophy.4. We suggest that littoral PP can contribute significantly to whole-lake PP even in highly humic lakes, and that the littoral contribution can shift some lakes which have been considered net heterotrophic to metabolic balance or even net autotrophy during the ice-free period. Small humic lakes like Mekkojärvi with rings of littoral vegetation are widespread, 35 especially in the boreal zone, and at least for similar lakes, evaluating lake metabolism from pelagic measurements alone is likely to be misleading.3
Lakes are important habitats for biogeochemical cycling of carbon. The organization and structure of aquatic communities influences the biogeochemical interactions between lakes and the atmosphere. Understanding how trophic structure regulates ecosystem functions and influences greenhouse gas efflux from lakes is critical to understanding global carbon cycling and climate change. With a whole-lake experiment in which a previously fishless lake was divided into two treatment basins where fish abundance was manipulated, we show how a trophic cascade from fish to microbes affects methane efflux to the atmosphere. Here, fish exert high grazing pressure and remove nearly all zooplankton. This reduction in zooplankton density increases the abundance of methanotrophic bacteria, which in turn reduce CH4 efflux rates by roughly 10 times. Given that globally there are millions of lakes emitting methane, an important greenhouse gas, our findings that aquatic trophic interactions significantly influence the biogeochemical cycle of methane has important implications.
Periphyton and phytoplankton contribute to the base of lake food webs, and both groups of microalgae are influenced by resources and physical forcing. Spatial variation in light availability interacts with the physical dynamics of the water column to create predictable depth gradients in resources and disturbance that may differentially affect periphyton vs phytoplankton. We characterized the depth distribution of chlorophyll and productivity of periphyton on sediments (epipelon) and phytoplankton in the euphotic zones of 13 oligomesotrophic lakes that span a large size gradient (0.017-32,600 km 2). Epipelic chlorophyll usually increased with depth in the epilimnion. Light was the primary driver of the consistent within-lake patterns in periphyton productivity across this lake-size gradient. In 5 lakes, epipelic periphyton exhibited a unimodal distribution of productivity with depth in the photic zone, but no evidence of photoinhibition was found for periphyton. Rather, patterns in sediment N and P and observed changes in biofilm structure were consistent with determination of epipelic biomass by disturbance at depths ≤1 m in the smaller lakes and by light limitation at depths >1 m. Further quantification of the effects of disturbance on epipelon is needed. Nonetheless, our data demonstrate that the perceived high spatial variability in periphyton biomass and productivity is not an impediment to development of robust models of whole-lake primary production that include both phytoplankton and periphyton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.