Benchmarking the performance of generative methods for drug design is complex and multifaceted. In this report, we propose a separation of concerns for de novo drug design, categorizing the task into three main categories: generation, discrimination, and exploration. We demonstrate that changes to any of these three concerns impacts benchmark performance for drug design taks. In this report we present Deriver, an open-source Python package that acts as a modular framework for molecule generation, with a focus on integrating multiple generative methods. Using Deriver, we demonstrate that changing parameters related to each of these three concerns impacts chemical space traversal significantly, and that the freedom to independently adjust each is critical to real-world applications having conflicting priorities. We find that combining multiple generative methods can improve optimization of molecular properties, and lower the chance of becoming trapped in local minima. Additionally, filtering molecules for drug-likeness (based on physicochemical properties and SMARTS pattern matching) before they are scored can hinder exploration, but can improve the quality of the final molecules. Finally, we demonstrate that any given task has an exploration algorithm best suited to it, though in practice linear probabilistic sampling generally results in the best outcomes, when compared to Monte Carlo sampling or greedy sampling. We intend that Deriver, which is being made freely available, will be helpful to others interested in collaboratively improving existing methods in de novo drug design centered around inheritance of molecular structure, modularity, extensibility, and separation of concerns.
Benchmarking the performance of generative methods for drug design is complex and multifaceted. In this report, we propose a separation of concerns for de novo drug design, categorizing the task into three main categories: generation, discrimination, and exploration. We demonstrate that changes to any of these three concerns impacts benchmark performance for drug design tasks. In this report we present Deriver, an open-source Python package that acts as a modular framework for molecule generation, with a focus on integrating multiple generative methods. Using Deriver, we demonstrate that changing parameters related to each of these three concerns impacts chemical space traversal significantly, and that the freedom to independently adjust each is critical to real-world applications having conflicting priorities. We find that combining multiple generative methods can improve optimization of molecular properties, and lower the chance of becoming trapped in local minima. Additionally, filtering molecules for drug-likeness (based on physicochemical properties and SMARTS pattern matching) before they are scored can hinder exploration, but can improve the quality of the final molecules. Finally, we demonstrate that any given task has an exploration algorithm best suited to it, though in practice linear probabilistic sampling generally results in the best outcomes, when compared to Monte Carlo sampling or greedy sampling. We intend that Deriver, which is being made freely available, will be helpful to others interested in collaboratively improving existing methods in de novo drug design centered around inheritance of molecular structure, modularity, extensibility, and separation of concerns.
Benchmarking the performance of generative methods for drug design is complex and multifaceted. In this report, we propose a separation of concerns for de novo drug design, categorizing the task into three main categories: generation , discrimination , and exploration. We demonstrate that changes to any of these three concerns impacts benchmark performance for drug design tasks. In this report we present Deriver, an open-source Python package that acts as a modular framework for molecule generation, with a focus on integrating multiple generative methods. Using Deriver, we demonstrate that changing parameters related to each of these three concerns impacts chemical space traversal significantly, and that the freedom to independently adjust each is critical to real-world applications having conflicting priorities. We find that combining multiple generative methods can improve optimization of molecular properties and lower the chance of becoming trapped in local minima. Additionally, filtering molecules for drug-likeness (based on physicochemical properties and SMARTS pattern matching) before they are scored may hinder exploration, but can also improve the quality of the final molecules. Finally, we demonstrate that any given task has an exploration algorithm best suited to it, though in practice linear probabilistic sampling generally results in the best outcomes, when compared to Monte Carlo sampling or greedy sampling. Deriver is being made freely available, to help others interested in collaboratively improving existing methods in de novo drug design centered around inheritance of molecular structure, modularity, extensibility, and separation of concerns.
Benchmarking the performance of generative methods for drug design is complex and multifaceted. In this report, we propose a separation of concerns for de novo drug design, categorizing the task into three main categories: generation, discrimination, and exploration. We demonstrate that changes to any of these three concerns impacts benchmark performance for drug design tasks. In this report we present Deriver, an open-source Python package that acts as a modular framework for molecule generation, with a focus on integrating multiple generative methods. Using Deriver, we demonstrate that changing parameters related to each of these three concerns impacts chemical space traversal significantly, and that the freedom to independently adjust each is critical to real-world applications having conflicting priorities. We find that combining multiple generative methods can improve optimization of molecular properties, and lower the chance of becoming trapped in local minima. Additionally, filtering molecules for drug-likeness (based on physicochemical properties and SMARTS pattern matching) before they are scored can hinder exploration, but can improve the quality of the final molecules. Finally, we demonstrate that any given task has an exploration algorithm best suited to it, though in practice linear probabilistic sampling generally results in the best outcomes, when compared to Monte Carlo sampling or greedy sampling. We intend that Deriver, which is being made freely available, will be helpful to others interested in collaboratively improving existing methods in de novo drug design centered around inheritance of molecular structure, modularity, extensibility, and separation of concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.