Beta oscillations (15-29Hz) are among the most prominent signatures of brain activity. Beta power is predictive of healthy and abnormal behaviors, including perception, attention and motor action. In non-averaged signals, beta can emerge as transient high-power 'events'. As such, functionally relevant differences in averaged power across time and trials can reflect changes in event number, power, duration, and/or frequency span. We show that functionally relevant differences in averaged beta power in primary somatosensory neocortex reflect a difference in the number of high-power beta events per trial, i.e. event rate. Further, beta events occurring close to the stimulus were more likely to impair perception. These results are consistent across detection and attention tasks in human magnetoencephalography, and in local field potentials from mice performing a detection task. These results imply that an increased propensity of beta events predicts the failure to effectively transmit information through specific neocortical representations.
Beta frequency oscillations (15-29Hz) are among the most prominent signatures of brain activity. Beta power is predictive of many healthy and abnormal behaviors, including perception, attention and motor action. Recent evidence shows that in non-averaged signals, beta can emerge as transient high-power "events". As such, functionally relevant differences in averaged power across time and trials can reflect accumulated changes in the number, power, duration, and/or frequency span of the events. We show for the first time that functionally relevant differences in averaged prestimulus beta power in human sensory neocortex reflects a difference in the number of high-power beta events per trial, i.e., the rate of events. Further, high power beta events close to the time of the stimulus were more likely to impair perception. This result is consistent across detection and attention tasks in human magnetoencephalography (MEG) and is conserved in local field potential (LFP) recordings of mice performing a detection task. Our findings suggest transient brain rhythms are best viewed as a "rate metric" in their impact on function, and provides a new framework for understanding and manipulating functionally relevant rhythmic events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.