Due to the excessive use of water required for cotton cultivation, scientists in this field have been looking at waste biomass as an alternative source of fiber supply. Canola waste biomass is a source of textile fibers which effectively costs nothing, as the biomass can be collected from the waste plant stems of canola plants after harvesting. Therefore, an investigation has been conducted to identify the characteristics of canola fiber and of the canola cultivar ( Brassica napus L.) suitable for textile applications. In this research, a bio-inspired approach was applied to produce fiber from canola biomass by water retting of four different cultivars (HYHEAR 1, Topas, 5440, and 45H29) cultivated in a greenhouse under controlled atmospheric conditions. It was found that the structural hierarchy of fiber density, mechanical properties and other textile fiber properties of canola fiber differ from cultivar to cultivar, which can be carefully harnessed for different applications. Further, it was found that the density of canola fiber is much lower than that of cotton and other competitive bast fibers, owing to its hollow structure, as revealed by scanning electron microscopy. The results suggest that canola may be an excellent choice for manufacturing of non-woven fabrics, eco-composites, apparel or other technical textiles.
Abstract:The continued search for sustainable and eco-friendly materials has led to the integration of bio-fibers, such as flax fiber, as reinforcement in composite materials; however, a wide variation in their diameters and mechanical properties poses a considerable challenge for their incorporation in load bearing and structural bio-composite materials. In this paper, a rigorous experimental investigation was performed using two varieties of linseed flax from two growing locations to determine if the variations observed in ultimate tensile strength, Young's modulus, failure strain and diameter could be attributed to the diameters of the stems that produced the fibers. Tests were performed in two different facilities and the results were compared and analyzed using Welch's t-tests. Results showed that samples which differed by stem diameter had statistically significant positive correlation with fiber diameter and negative correlation with tensile strength. No correlations for tensile strength, Young's modulus or fiber diameter were found in samples with the same stem diameter range that were grown in different locations or were of different varieties, that is the effect of location and variety is not statistically significant. Failure strain did not show any statistical significance with respect to differences in stem diameter and only showed one statistically significant result between both facilities for one of the two growing location comparisons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.