T he advent of clinically available white matter fiber tracking, a technique that maps white matter pathways from diffusion-weighted MRI data 27 promises the ability to visualize a range of eloquent white matter tracts in individual patients. 12,17,24,30,33 The potential power of this information in many clinical situations is such that 3D maps are already being integrated with neurosurgical navigation systems, often being relied upon for the purpose of presurgical planning and intraoperative navigation. 10,23,33 Although the fundamental limitations of the most commonly used tractography method, namely DTI 6 -based tractography, are well described in the tech- Object. Diffusion-based MRI tractography is an imaging tool increasingly used in neurosurgical procedures to generate 3D maps of white matter pathways as an aid to identifying safe margins of resection. The majority of white matter fiber tractography software packages currently available to clinicians rely on a fundamentally flawed framework to generate fiber orientations from diffusion-weighted data, namely diffusion tensor imaging (DTI). This work provides the first extensive and systematic exploration of the practical limitations of DTI-based tractography and investigates whether the higher-order tractography model constrained spherical deconvolution provides a reasonable solution to these problems within a clinically feasible timeframe.Methods. Comparison of tractography methodologies in visualizing the corticospinal tracts was made using the diffusion-weighted data sets from 45 healthy controls and 10 patients undergoing presurgical imaging assessment. Tensor-based and constrained spherical deconvolution-based tractography methodologies were applied to both patients and controls.Results. Diffusion tensor imaging-based tractography methods (using both deterministic and probabilistic tractography algorithms) substantially underestimated the extent of tracks connecting to the sensorimotor cortex in all participants in the control group. In contrast, the constrained spherical deconvolution tractography method consistently produced the biologically expected fan-shaped configuration of tracks. In the clinical cases, in which tractography was performed to visualize the corticospinal pathways in patients with concomitant risk of neurological deficit following neurosurgical resection, the constrained spherical deconvolution-based and tensor-based tractography methodologies indicated very different apparent safe margins of resection; the constrained spherical deconvolution-based method identified corticospinal tracts extending to the entire sensorimotor cortex, while the tensor-based method only identified a narrow subset of tracts extending medially to the vertex.Conclusions. This comprehensive study shows that the most widely used clinical tractography method (diffusion tensor imaging-based tractography) results in systematically unreliable and clinically misleading information. The higher-order tractography model, using the same diffusion-weighted data, clea...
See Derry and Kent (doi:10.1093/awx167) for a scientific commentary on this article.The large variance in cognitive deterioration in subjects who test positive for amyloid-β by positron emission tomography indicates that convergent pathologies, such as iron accumulation, might combine with amyloid-β to accelerate Alzheimer's disease progression. Here, we applied quantitative susceptibility mapping, a relatively new magnetic resonance imaging method sensitive to tissue iron, to assess the relationship between iron, amyloid-β load, and cognitive decline in 117 subjects who underwent baseline magnetic resonance imaging and amyloid-β positron emission tomography from the Australian Imaging, Biomarkers and Lifestyle study (AIBL). Cognitive function data were collected every 18 months for up to 6 years from 100 volunteers who were either cognitively normal (n = 64) or diagnosed with mild cognitive impairment (n = 17) or Alzheimer's disease (n = 19). Among participants with amyloid pathology (n = 45), higher hippocampal quantitative susceptibility mapping levels predicted accelerated deterioration in composite cognition tests for episodic memory [β(standard error) = -0.169 (0.034), P = 9.2 × 10-7], executive function [β(standard error) = -0.139 (0.048), P = 0.004), and attention [β(standard error) = -0.074 (0.029), P = 0.012]. Deteriorating performance in a composite of language tests was predicted by higher quantitative susceptibility mapping levels in temporal lobe [β(standard error) = -0.104 (0.05), P = 0.036] and frontal lobe [β(standard error) = -0.154 (0.055), P = 0.006]. These findings indicate that brain iron might combine with amyloid-β to accelerate clinical progression and that quantitative susceptibility mapping could be used in combination with amyloid-β positron emission tomography to stratify individuals at risk of decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.