We investigate a novel approach for studying protein folding that has evolved from robotics motion planning techniques called probabilistic roadmap methods (prms). Our focus is to study issues related to the folding process, such as the formation of secondary and tertiary structure, assuming we know the native fold. A feature of our prm-based framework is that the large sets of folding pathways in the roadmaps it produces, in a few hours on a desktop PC, provide global information about the protein's energy landscape. This is an advantage over other simulation methods such as molecular dynamics or Monte Carlo methods which require more computation and produce only a single trajectory in each run. In our initial studies, we obtained encouraging results for several small proteins. In this paper, we investigate more sophisticated techniques for analyzing the folding pathways in our roadmaps. In addition to more formally revalidating our previous results, we present a case study showing our technique captures known folding differences between the structurally similar proteins G and L.
Automatic motion planning has applications ranging from traditional robotics to computer-aided design to computational biology and chemistry. While randomized planners, such as probabilistic roadmap methods (prms) or rapidly-exploring random trees (rrt), have been highly successful in solving many high degree of freedom problems, there are still many scenarios in which we need better methods, e.g., problems involving narrow passages or which contain multiple regions that are best suited to different planners.In this work, we present resampl, a motion planning strategy that uses local region information to make intelligent decisions about how and where to sample, which samples to connect together, and to find paths through the environment. Briefly, resampl classifies regions based on the entropy of the samples in it, and then uses these classifications to further refine the sampling. Regions are placed in a region graph that encodes relationships between regions, e.g., edges correspond to overlapping regions. The strategy for connecting samples is guided by the region graph, and can be exploited in both multi-query and single-query scenarios. Our experimental results comparing resampl to previous multi-query and single-query methods show that resampl is generally significantly faster and also usually requires fewer samples to solve the problem.
We propose a novel, motion planning based approach to approximately map the energy landscape of an RNA molecule. Our method is based on the successful probabilistic roadmap motion planners that we have previously successfully applied to protein folding. The key advantage of our method is that it provides a sparse map that captures the main features of the landscape and which can be analyzed to compute folding kinetics. In this paper, we provide evidence that this approach is also well suited to RNA. We compute population kinetics and transition rates on our roadmaps using the master equation for a few moderately sized RNA and show that our results compare favorably with results of other existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.