Wastewater is an important source of perfluoroalkyl acids (PFAAs) to environmental waters. PFAAs are poorly removed during conventional wastewater treatment and only moderately removed by nonselective adsorbents [e.g., activated carbon (AC)]. Molecularly imprinted polymers (MIPs) enable selective adsorption of trace organics (e.g., PFAAs) by templating polymerization with a target compound; however, MIP morphology limits use for wastewater treatment. To overcome this obstacle, a perfluorooctanesulfonate (PFOS)-templated MIP was immobilized on spent coffee grounds biochar�an eco-friendly AC alternative�via radical initiated polymerization. Vinylbenzyl trimethylammonium chloride (VBTAC) and/or 2-(trifluoromethyl)acrylic acid served as functional monomers for MIP synthesis. First, biochar surfaces were functionalized with −NH MIP attachment points via (i) electrophilic aromatic substitution followed by reduction or (ii) heat-catalyzed addition of melamine. Melamine-modified biochar functionalized with VBTAC-MIP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.