Anti-PEG antibodies have been reported to mediate the accelerated clearance of PEG-conjugated proteins and liposomes, all of which contain methoxyPEG (mPEG). The goal of this research was to assess the role of the methoxy group in the immune responses to mPEG conjugates and the potential advantages of replacing mPEG with hydroxyPEG (HO-PEG). Rabbits were immunized with mPEG, HO-PEG, or t-butoxyPEG (t-BuO-PEG) conjugates of human serum albumin, human interferon-α, or porcine uricase as adjuvant emulsions. Assay plates for enzyme-linked immunosorbent assays (ELISAs) were coated with mPEG, HO-PEG, or t-BuO-PEG conjugates of the non-cross-reacting protein, porcine superoxide dismutase (SOD). In sera from rabbits immunized with HO-PEG conjugates of interferon-α or uricase, the ratio of titers of anti-PEG antibodies detected on mPEG-SOD over HO-PEG-SOD (“relative titer”) had a median of 1.1 (range 0.9–1.5). In contrast, sera from rabbits immunized with mPEG conjugates of three proteins had relative titers with a median of 3.0 (range 1.1–20). Analyses of sera from rabbits immunized with t-BuO-PEG-albumin showed that t-butoxy groups are more immunogenic than methoxy groups. Adding Tween 20 or Tween 80 to buffers used to wash the assay plates, as is often done in ELISAs, greatly reduced the sensitivity of detection of anti-PEG antibodies. Competitive ELISAs revealed that the affinities of antibodies raised against mPEG-uricase were c. 70 times higher for 10 kDa mPEG than for 10 kDa PEG diol and that anti-PEG antibodies raised against mPEG conjugates of three proteins had >1000 times higher affinities for albumin conjugates with c. 20 mPEGs than for analogous HO-PEG-albumin conjugates. Overall, these results are consistent with the hypothesis that antibodies with high affinity for methoxy groups contribute to the loss of efficacy of mPEG conjugates, especially if multiply-PEGylated. Using monofunctionally activated HO-PEG instead of mPEG in preparing conjugates for clinical use might decrease this undesirable effect.
Omacetaxine mepesuccinate (formerly homoharringtonine) is a molecule with a mechanism of action that is different from tyrosine kinase inhibitors and its activity in chronic myeloid leukemia (CML) seems to be independent of BCR-ABL mutation status. Using BCR-ABL-expressing myelogenous and lymphoid cell lines and mouse models of CML and B cell acute lymphoblastic leukemia (B-ALL) induced by wild type BCR-ABL or T315I mutant-BCR-ABL, we evaluated the inhibitory effects of omacetaxine on CML and B-ALL. We demonstrated that more than 90% of the leukemic stem cells were killed after treatment with omacetaxine in vitro. In contrast, less than 9% or 25% of the leukemic stem cells were killed after treating with imatinib or dasatinib, respectively. After 4 days of treatment of CML mice with omacetaxine, Gr-1+myeloid leukemia cells decreased in the peripheral blood of the treated CML mice. In the omacetaxine treated B-ALL mice, only 0.8% B220+leukemia cells were found in peripheral blood, compared with 34% B220+leukemia cells in the placebo group. Treatment with omacetaxine decreased the number of leukemia stem cells and prolonged survival of mice with BCR-ABL induced CML or B-ALL.
The use of methoxypoly(ethylene glycol) (mPEG) in PEG conjugates of proteins and non-protein therapeutic agents has led to the recognition that the polymer components of such conjugates can induce anti-PEG antibodies (anti-PEGs) that may accelerate the clearance and reduce the efficacy of the conjugates. Others have classified anti-PEGs as "methoxy-specific" or "backbone-specific". The results of our previous research on anti-PEGs in the sera of rabbits immunized with mPEG or hydroxyPEG (HO-PEG) conjugates of three unrelated proteins were consistent with that classification (Sherman, M.R., et al., 2012. Bioconjug. Chem. 23, 485-499). Enzyme-linked immunosorbent assays (ELISAs) were performed on rabbit antisera and rabbit monoclonal anti-PEGs with competitors including 10 kDa mPEG, 10 kDa PEG diol and six linear or cyclic oligomers of oxyethylene (CH2CH2O), with molecular weights of ca. 150-264 Da. Our results demonstrate that (1) the binding affinities of anti-mPEGs depend more on the backbone lengths of the polymers and the hydrophobicities of their end-groups than on their resemblance to the methoxy terminus of the immunogenic polymer; (2) anti-PEGs raised against HO-PEG-proteins are not directed against the terminal hydroxy group, but against the backbone; (3) rabbit anti-PEGs bind to and distinguish among PEG-like oligomers with as few as three oxyethylene groups; and (4) none of the monoclonal or polyclonal anti-PEGs was absolutely "methoxy-specific" or "backbone-specific", but displayed distinct relative selectivities. If these results are relevant to human immune responses, the clinical use of stable conjugates of HO-PEG with proteins and non-protein therapeutic agents would be expected to produce fewer and less intense immune responses than those induced by conjugates with mPEG or PEGs with larger alkoxy groups.
The Abl tyrosine kinase inhibitors (TKIs) imatinib mesylate (IM) and dasatinib, targeting BCR-ABL for the treatment of Philadelphia-positive (Ph+) leukemia including chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL), have produced impressive results in terms of therapeutic outcome and safety for patients. However, clinical resistance to these TKIs likely at the level of leukemic stem cell negates curative results in Ph+ leukemia. At present, an anti-stem cell strategy has not been developed for treating these leukemia patients. Homoharringtonine (HHT) (omacetaxine mepesuccinate - USAN/INN designation) has shown significant clinical activity in CML in combination with IM or alone for patients failing IM. However, little is known about whether HHT has an inhibitory effect on leukemic stem cells. The purpose of this study is to determine whether HHT inhibits BCR-ABL-expressing leukemic stem cells (Lin-c-Kit+Sca-1+) that we identified previously (Hu et al. Proc Natl Acad Sci USA 103(45):16870–16875, 2007) and to evaluate therapeutic effects of HHT on CML and B-ALL in mice. We find that in our in vitro stem cell assay, greater than 90% of leukemic stem cells were killed after being treating with HHT (12.5, 25, and 50 nM) for 6 days, and in contrast, greater than 75% or 92% of leukemic stem cells survived the treatment with dasatinib (100 nM) or imatinib (2 mM). We next treated CML mice with HHT (0.5 mg/kg, i.p., once a day). 4 days after the treatment, FACS analysis detected only 2% GFP+Gr–1+ myeloid leukemia cells in peripheral blood of HHT -treated CML mice and in contrast, 41% GFP+Gr–1+ myeloid leukemia cells in placebo-treated mice. We also treated mice with BCR-ABL induced B-ALL with HHT, and found that only 0.78% GFP+B220+ lymphoid leukemia cells were detected in peripheral blood compared to 34% GFP+B220+ lymphoid leukemia cells in placebo-treated mice. Furthermore, HHT significantly inhibited in vitro proliferation of K562 and B-lymphoid leukemic cells isolated from mice with B-ALL induced by BCR-ABL wild type and BCR-ABL-T315I resistant to both imatinib and dasatinib. In sum, HHT has an inhibitory activity against CML stem cells, and is highly effective in treating CML and B-ALL induced by BCR-ABL in mice.
Although the majority of CML patients initially respond positively to BCR-ABL tyrosine kinase inhibitors (TKIs), they fail to eradicate the leukemia stem cells (LSCs) from which the disease arises. Only a minority of patients is able to discontinue TKI therapy, presumably due to the survival of LSCs. Therefore, the development of new therapeutics which ablate CML stem cells through a non-TKI, BCR-ABL independent pathway is needed. The Wnt/β-catenin pathway has been identified as an LSC survival pathway which provides proliferative signals and controls the stability of BCR-ABL1 through the increased expression of β-catenin. While previous research has demonstrated that Wnt/β-catenin is necessary for the survival and self-renewal of all CML cells and LSCs, it is not essential for maintenance of normal hematopoietic stem cells (HSCs). Tetrandrine (ES-3000, TET) is a natural product alkaloid used clinically in China as an analgesic and an anti-inflammatory. Its known mechanism of action is the inhibition of voltage-gated calcium channels and calcium activated big potassium (BK) channels which are commonly overexpressed in malignancies. However, TET has recently been demonstrated to inhibit the Wnt/β-catenin pathway resulting in a reduced expression of β-catenin, putatively through the inhibition of CaMKII-γ activation. This study investigated the efficacy of TET in models of CML stem cells. To demonstrate that TET can reduce β-catenin in leukemic cells, an in vitro assay with leukemic K562 cells was performed. Cells were exposed to TET for 24 hours at concentrations between 0-40 μM. Cell lysates were assayed by Western blot for β-catenin and actin. The results demonstrated that TET reduces β-catenin expression in a dose dependent manner. The effectiveness of TET was tested on CML stem cells using an in vivo mouse CML model. After priming donor C57BL/6 (B6) mice with intravenous injections of 5-fluorouracil for four days, bone marrow cells were harvested from femurs and tibia, then transfected twice with retrovirus containing MSCV-BCR-ABL-IRES-GFP. Recipient mice were lethally irradiated by two doses of 550 cGy before bone marrow transplantation by intravenous injection with 5x105 cells/mouse. Blood from recipient mice was tested for disease induction one week after transduction by FACS analysis for GFP. All mice tested positive. Treatments started on day 8 after bone marrow transplantation. Mice were randomized into four groups and treated orally with vehicle [3x/day, 2x], imatinib [100 mg/kg, 2x/day], TET [150 mg/kg, 1x/day] or imatinib + TET [3x/day: 2x with imatinib, 1x with TET]. The results of this study demonstrated that TET given orally once a day is superior to imatinib given twice a day in inhibiting the development of both circulating leukemic cells and leukemic stem cells while the combination of TET with imatinib further improves efficacy (See Figure). To determine whether TET has efficacy on human CML stem-like cells, a colony forming cell (CFC) assay with bone marrow cells from a de-novo CML patient was performed. The bone marrow cells were treated with 10 µM (IC50) TET for 14 days. After treatment, primary and secondary colonies were grown and analyzed by qPCR to determine BCR-ABL or ABL only cells. Replating efficiency of TET treated cells was 54% compared to 67% of solvent controls. In primary colonies, 95% of colonies from solvent control cultures were BCR-ABL positive compared to 70% of colonies treated with ES-3000. In secondary colonies (representing stem-ness), the TET treatment group was negative for BCR-ABL colonies while 79% of solvent control colonies still tested positive for BCR-ABL, indicating efficacy of TET in CML stem-like cells (See Table). We conclude that TET reduces leukemic stem cells in both a murine model of CML and a CFC assay which demonstrates its potential for development as an adjuvant therapy for CML patients demonstrating a lack of optimal response to TKIs, alone. Figure Figure. Table Table. Disclosures Michaels: Escend Pharmaceuticals, Inc.: Equity Ownership. Bates:Escend Pharmaceuticals, Inc.: Equity Ownership.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.