Liquid crystal displays (LCDs) have shown great promise in the consumer market for their use as both computer and television displays. Despite their many advantages, the inherent sample-and-hold nature of LCD image formation results in a phenomenon known as motion blur. In this work, we develop a method for motion blur reduction using the Richardson-Lucy deconvolution algorithm in concert with motion vector information from the scene. We further refine our approach by introducing a perceptual significance metric that allows us to weight the amount of processing performed on different regions in the image. In addition, we analyze the role of motion vector errors in the quality of our resulting image. Perceptual tests indicate that our algorithm reduces the amount of perceivable motion blur in LCDs.
This paper describes the evolution of recent work on using crowdsourced analysis of remote sensing imagery, particularly high-resolution aerial imagery, to provide rapid, reliable assessments of damage caused by earthquakes and potentially other disasters. The initial effort examined online imagery taken after the 2008 Wenchuan, China, earthquake. A more recent response to the 2010 Haiti earthquake led to the formation of an international consortium: the Global Earth Observation Catastrophe Assessment Network (GEO-CAN). The success of GEO-CAN in contributing to the official damage assessments made by the Government of Haiti, the United Nations, and the World Bank led to further development of a webbased interface. A current initiative in Christchurch, New Zealand, is underway where remote sensing experts are analyzing satellite imagery, geotechnical engineers are marking liquefaction areas, and structural engineers are identifying building damage. The current site includes online training to improve the accuracy of the assessments and make it possible for even novice users to contribute to the crowdsourced solution. The paper discusses lessons learned from these initiatives and presents a way forward for using crowdsourced remote sensing as a tool for rapid assessment of damage caused by natural disasters around the world.
For time-division multiplexed satellite communications links, a multi-rate waveform can enable substantial capacity gains over waveforms employing static coding and modulation. Using a multi-rate waveform such as DVB-S2 with adaptive coding and modulation (ACM), a user's data is transported with the most efficient modulation and forward error correction coding point that specific user can reliably receive.Many mobile satellite communication applications require a substantially smaller aperture or a lowerprofile antenna as compared to typical fixed-site very small aperture terminals (VSATs) for which DVB-S2 was designed. Over a wide area of operation, these smaller mobile terminals often cannot establish a link that observes regulatory powerspectral density limits using even the most robust modulation and code point that the DVB-S2 waveform offers.By adding the concept of adaptive direct sequence spreading to the adaptive coding and modulation, a more capable multi-rate waveform emerges that addresses a comprehensive set of mobile terminal platform types and scenarios. In this paper, the Adaptive Coding Spreading and Modulation (ACSM) concept is described and the capacity gains are quantified for several case studies. Also, a blockage mitigation technique employed within the ACSM concept that enables communications on train or helicopter mounted platforms is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.