Simian immunodeficiency virus (SIV) lineages have been identified that are endemic to Bioko Island. The time the island formed offers a geological time scale calibration point for dating the most recent common ancestor of SIV. The Bioko viruses cover the whole range of SIV genetic diversity, and each Bioko SIV clade is most closely related to viruses circulating in hosts of the same genus on the African mainland rather than to SIVs of other Bioko species. Our phylogeographic approach establishes that SIV is ancient and at least 32,000 years old. Our conservative calibration point and analyses of gene sequence saturation and dating bias suggest it may be much older.
Historically, the olive ridley arribada at Playa Nancite, Costa Rica, was one of the largest olive ridley arribadas in the eastern Pacific with 70,000 nesting females in a year. Recently the Nancite arribada drastically declined. We hypothesized that the population decline at Playa Nancite could have been due to low hatching success as a result of the high density of nests on the beach, such that recruitment to the population was insufficient to balance losses. To test this hypothesis, we examined density-dependent effects on hatching success and their underlying mechanisms by experimentally manipulating nest densities in experimental plots on the nesting beach. We set up four nest-density treatments in five experimental blocks. We measured effects of density on hatching success, CO(2) and O(2) concentrations and temperature both within nests and in sand adjacent to nests frequently during incubation. Experimental nest densities affected hatching success with the highest density having the lowest hatching success. Higher nest density led to lower O(2) levels and higher CO(2) levels in the nest with greater changes in the latter part of the incubation. Highest temperatures occurred in high-density areas. Temperatures were lower in sand surrounding the nest than in the nest. Effects of density on temperature, CO(2) and O(2) were confirmed at a naturally high-density nesting beach, Playa La Flor, Nicaragua. Long-term failure in production of hatchlings due to historic high densities may have contributed to the decline of arribadas on Playa Nancite. Thus, density-dependent population control would have operated at the embryonic life stage in this population of olive ridley turtles.
Bushmeat hunting is extensive in west and central Africa as both a means for subsistence and for commercial gain. Commercial hunting represents one of the primary threats to wildlife in the region, and confounding factors have made it challenging to examine how external factors influence the commercial bushmeat trade. Bioko Island, Equatorial Guinea is a small island with large tracts of intact forest that support sizeable populations of commercially valuable vertebrates, especially endemic primates. The island also has a low human population and has experienced dramatic economic growth and rapid development since the mid-1990’s. From October 1997 – September 2010, we monitored the largest bushmeat market on Bioko in Malabo, recording over 197,000 carcasses for sale. We used these data to analyze the dynamics of the market in relation to political events, environmental legislation, and rapid economic growth. Our findings suggest that bushmeat hunting and availability increased in parallel with the growth of Equatorial Guinea’s GDP and disposable income of its citizens. During this 13-year study, the predominant mode of capture shifted from trapping to shotguns. Consequently, carcass volume and rates of taxa typically captured with shotguns increased significantly, most notably including intensified hunting of Bioko's unique and endangered monkey fauna. Attempts to limit bushmeat sales, including a 2007 ban on primate hunting and trade, were only transiently effective. The hunting ban was not enforced, and was quickly followed by a marked increase in bushmeat hunting compared to hunting rates prior to the ban. Our results emphasize the negative impact that rapid development and unenforced legislation have had on Bioko’s wildlife, and demonstrate the need for strong governmental support if conservation strategies are to be successful at preventing extinctions of tropical wildlife.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.