The interaction of carbon-based aromatic molecules and nanostructures with metals can strongly depend on the topology of their π-electron systems. This is shown with a model system using the isomers azulene, which has a nonalternant π system with a 5-7 ring structure, and naphthalene, which has an alternant π system with a 6-6 ring structure. We found that azulene can interact much more strongly with metal surfaces. On copper (111), its zero-coverage desorption energy is 1.86 eV, compared to 1.07 eV for naphthalene. The different bond strengths are reflected in the adsorption heights, which are 2.30 Å for azulene and 3.04 Å for naphthalene, as measured by the normal incidence x-ray standing wave technique. These differences in the surface chemical bond are related to the electronic structure of the molecular π systems. Azulene has a lowlying LUMO that is close to the Fermi energy of Cu and strongly hybridizes with electronic states of the surface, as is shown by photoemission, near-edge x-ray absorption fine-structure, and scanning tunneling microscopy data in combination with theoretical analysis. According to density functional theory calculations, electron donation from the surface into the molecular LUMO leads to negative charging and deformation of the adsorbed azulene. Noncontact atomic force microscopy confirms the deformation, while Kelvin probe force microscopy maps show that adsorbed azulene partially retains its in-plane dipole. In contrast, naphthalene experiences only minor adsorption-induced changes of its electronic and geometric structure. Our results indicate that the electronic properties of metal-organic interfaces, as they occur in organic (opto)electronic devices, can be tuned through modifications of the π topology of the molecular organic semiconductor, especially by introducing 5-7 ring pairs as functional structural elements.
Interfaces between polycyclic -electron systems and metals play prominent roles in organic or graphene-based (opto)electronic devices, in which performance-related parameters depend critically on the properties of metal/semiconductor contacts. Here, we explore how the topology of the -electron system influences the bonding and the electronic properties of the interface. We use azulene as a model for nonalternant pentagonheptagon (5-7) ring pairs and compare it to its isomer naphthalene, which represents the alternant 6-6 ring pair. Their coverage-dependent interaction with Ag(111) and Cu(111) surfaces was studied with the normal-incidence X-ray standing wave (NIXSW) technique, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, UV and X-ray photoelectron spectroscopy (UPS, XPS), and density functional theory (DFT). Coveragedependent adsorption heights and spectroscopic data reveal that azulene forms shorter interfacial bonds than naphthalene and engages in stronger electronic interactions with both surfaces. These differences are more pronounced on Cu. Increasing coverages lead to larger adsorption heights, indicating bond weakening by intermolecular repulsion. The extensive DFT calculations include dispersive interactions using: (1) the DFT-D3 scheme, (2) the vdW surf correction based on DFT-TS, (3) a Many-Body Dispersion (MBD) correction scheme, and (4) the D3 surf scheme. All methods predict the adsorption heights reasonably well with an average error below 0.1 Å. The stronger bond of azulene is attributed to its nonalternant topology, which results in a reduced HOMO-LUMO gap and brings the LUMO energetically close to the Fermi energy of the metal, causing stronger hybridization with electronic states of the metal surfaces.
2D materials display very promising intrinsic material properties, with multiple applications in electronics, photonics, and sensing. In particular layered platinum diselenide has shown high potential due to its layer-dependent tunable bandgap, low-temperature growth, and high environmental stability. Here, the conformal and area selective (AS) low-temperature growth of layered PtSe 2 is presented defining a new paradigm for 2D material integration. The thermally-assisted conversion of platinum which is deposited by AS atomic layer deposition to PtSe 2 is demonstrated on various substrates with a distinct 3D topography. Further the viability of the approach is presented by successful on-chip integration of hybrid semiconductor devices, namely by the manufacture of a highly sensitive ammonia sensors channel with 3D topography and fully integrated infrared-photodetectors on silicon photonics waveguides. The presented methodologies of conformal and AS growth therefore lay the foundation for new design routes for the synthesis of more complex hybrid structures with 2D materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.