Recent advances in computational technology have enabled the use of model-based simulation with real-time motion tracking to estimate ground reaction forces during gait. We show here that a biomechanical-based model including a foot-ground contact can reproduce measured ground reaction forces using inertial measurement unit data during single-leg support, single-support jump, side to side jump, jogging, and skipping. The framework is based on our previous work on integrating the OpenSim musculoskeletal models with the Unity environment. The validation was performed on a single subject performing several tasks that involve the lower extremity. The novelty of this paper includes the integration and real-time tracking of inertial measurement unit data in the current framework, as well as the estimation of contact forces using biologically based musculoskeletal models. The RMS errors of tracking the vertical ground reaction forces are 0.027 bodyweight, 0.174 bodyweight, 0.173 bodyweight, 0.095 bodyweight, and 0.10 bodyweight for single-leg support, single-support jump, side to side jump, jogging, and skipping, respectively. The average RMS error for all tasks and trials is 0.112 bodyweight. This paper provides a computational framework for further applications in whole-body human motion analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.