The main protease of SARS-CoV-2 is a critical target for the design and development of antiviral drugs. 2.5 M compounds were used in this study to train an LSTM generative network via transfer learning in order to identify the four best candidates capable of inhibiting the main proteases in SARS-CoV-2. The network was fine-tuned over ten generations, with each generation resulting in higher binding affinity scores. The binding affinities and interactions between the selected candidates and the SARS-CoV-2 main protease are predicted using a molecular docking simulation using AutoDock Vina. The compounds selected have a strong interaction with the key MET 165 and Cys145 residues. Molecular dynamics (MD) simulations were run for 150ns to validate the docking results on the top four ligands. Additionally, root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and hydrogen bond analysis strongly support these findings. Furthermore, the MM-PBSA free energy calculations revealed that these chemical molecules have stable and favorable energies, resulting in a strong binding with Mpro's binding site. This study's extensive computational and statistical analyses indicate that the selected candidates may be used as potential inhibitors against the SARS-CoV-2 in-silico environment. However, additional in-vitro, in-vivo, and clinical trials are required to demonstrate their true efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.