Designing the supply chain network is one of the significant areas in e-commerce business management. This concept plays a crucial role in e-commerce systems. For example, location-inventory-pricing-routing of an e-commerce supply chain is considered a crucial issue in this field. This field established many severe challenges in the modern world, like maintaining the supply chain for returned items, preserving customers' trust and satisfaction, and developing an applicable supply chain with cost considerations. The research proposes a multi-objective mixed integer nonlinear programming model to design a closed-loop supply chain network based on the e-commerce context. The proposed model incorporates two objectives that optimize the business's total profits and the customers' satisfaction. Then, numerous numerical examples are generated and solved using the epsilon constraint method in GAMS optimization software. The validation of the given model has been tested for the large problems via a hybrid two-level non-dominated sort genetic algorithm. Finally, some sensitivity analysis has been performed to provide some managerial insights.
In today’s systems and networks, disruption is inevitable. Designing a reliable system to overcome probable facility disruptions plays a crucial role in planning and management. This article proposes a reliable capacitated facility joint inventory-location problem where location-independent disruption may occur in facilities. The system tries to satisfy customer's demands and considers penalty costs for unmet customer demand. The article aims to minimize total costs such as establishing inventory, uncovered demand’s penalty, and transportation costs. While many articles in this area only use exact methods to solve the problem, this article uses a metaheuristic algorithm, the red deer algorithm, and the exact methods. Various numerical examples have shown the outstanding performance of the red deer algorithm compared to exact methods. Sensitivity analyses show the impacts of various parameters on the objective function and the optimal facility layouts. Lastly, managerial insights will be proposed based on sensitivity analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.