Due to the recent advances in the area of deep learning, it has been demonstrated that a deep neural network, trained on a huge amount of data, can recognize cardiac arrhythmias better than cardiologists. Moreover, traditionally feature extraction was considered an integral part of ECG pattern recognition; however, recent findings have shown that deep neural networks can carry out the task of feature extraction directly from the data itself. In order to use deep neural networks for their accuracy and feature extraction, high volume of training data is required, which in the case of independent studies is not pragmatic. To arise to this challenge, in this work, the identification and classification of four ECG patterns are studied from a transfer learning perspective, transferring knowledge learned from the image classification domain to the ECG signal classification domain. It is demonstrated that feature maps learned in a deep neural network trained on great amounts of generic input images can be used as general descriptors for the ECG signal spectrograms and result in features that enable classification of arrhythmias. Overall, an accuracy of 97.23 percent is achieved in classifying near 7000 instances by ten-fold cross validation.
Generative adversarial networks have been able to generate striking results in various domains. This generation capability can be general while the networks gain deep understanding regarding the data distribution. In many domains, this data distribution consists of anomalies and normal data, with the anomalies commonly occurring relatively less, creating datasets that are imbalanced. The capabilities that generative adversarial networks offer can be leveraged to examine these anomalies and help alleviate the challenge that imbalanced datasets propose via creating synthetic anomalies. This anomaly generation can be specifically beneficial in domains that have costly data creation processes as well as inherently imbalanced datasets. One of the domains that fits this description is the hostbased intrusion detection domain. In this work, ADFA-LD dataset is chosen as the dataset of interest containing system calls of small foot-print next generation attacks. The data is first converted into images, and then a Cycle-GAN is used to create images of anomalous data from images of normal data. The generated data is combined with the original dataset and is used to train a model to detect anomalies. By doing so, it is shown that the classification results are improved, with the AUC rising from 0.55 to 0.71, and the anomaly detection rate rising from 17.07% to 80.49%. The results are also compared to SMOTE, showing the potential presented by generative adversarial networks in anomaly generation.
The advancements in the Internet has enabled connecting more devices into this technology every day. The emergence of the Internet of Things has aggregated this growth. Lack of security in an IoT world makes these devices hot targets for cyber criminals to perform their malicious actions. One of these actions is the Botnet attack, which is one of the main destructive threats that has been evolving since 2003 into different forms. This attack is a serious threat to the security and privacy of information. Its scalability, structure, strength, and strategy are also under successive development, and that it has survived for decades. A bot is defined as a software application that executes a number of automated tasks (simple but structurally repetitive) over the Internet. Several bots make a botnet that infects a number of devices and communicates with their controller called the botmaster to get their instructions. A botnet executes tasks with a rate that would be impossible to be done by a human being. Nowadays, the activities of bots are concealed in between the normal web flows and occupy more than half of all web traffic. The largest use of bots is in web spidering (web crawler), in which an automated script fetches, analyzes, and files information from web servers. They also contribute to other attacks, such as distributed denial of service (DDoS), SPAM, identity theft, phishing, and espionage. A number of botnet detection techniques have been proposed, such as honeynet-based and Intrusion Detection System (IDS)-based. These techniques are not effective anymore due to the constant update of the bots and their evasion mechanisms. Recently, botnet detection techniques based upon machine/deep learning have been proposed that are more capable in comparison to their previously mentioned counterparts. In this work, we propose a deep learning-based engine for botnet detection to be utilized in the IoT and the wearable devices. In this system, the normal and botnet network traffic data are transformed into image before being given into a deep convolutional neural network, named DenseNet with and without considering transfer learning. The system is implemented using Python programming language and the CTU-13 Dataset is used for evaluation in one study. According to our simulation results, using transfer learning can improve the accuracy from 33.41% up to 99.98%. In addition, two other classifiers of Support Vector Machine (SVM) and logistic regression have been used. They showed an accuracy of 83.15% and 78.56%, respectively. In another study, we evaluate our system by an in-house live normal dataset and a solely botnet dataset. Similarly, the system performed very well in data classification in these studies. To examine the capability of our system for real-time applications, we measure the system training and testing times. According to our examination, it takes 0.004868 milliseconds to process each packet from the network traffic data during testing.
Biometric verification systems have become prevalent in the modern world with the wide usage of smartphones. These systems heavily rely on storing the sensitive biometric data on the cloud. Due to the fact that biometric data like fingerprint and iris cannot be changed, storing them on the cloud creates vulnerability and can potentially have catastrophic consequences if these data are leaked. In the recent years, in order to preserve the privacy of the users, homomorphic encryption has been used to enable computation on the encrypted data and to eliminate the need for decryption. This work presents DeepZeroID: a privacy-preserving cloud-based and multiple-party biometric verification system that uses homomorphic encryption. Via transfer learning, training on sensitive biometric data is eliminated and one pre-trained deep neural network is used as feature extractor. By developing an exhaustive search algorithm, this feature extractor is applied on the tasks of biometric verification and liveness detection. By eliminating the need for training on and decrypting the sensitive biometric data, this system preserves privacy, requires zero knowledge of the sensitive data distribution, and is highly scalable. Our experimental results show that DeepZeroID can deliver 95.47% F1 score in the verification of combined iris and fingerprint feature vectors with zero true positives and with a 100% accuracy in liveness detection.
Printed circuit board (PCB) assurance in the optical domain is a crucial field of study. Though there are many existing PCB assurance methods using image processing, computer vision (CV), and machine learning (ML), the PCB field is complex and increasingly evolving, so new techniques are required to overcome the emerging problems. Existing ML-based methods outperform traditional CV methods; however, they often require more data, have low explainability, and can be difficult to adapt when a new technology arises. To overcome these challenges, CV methods can be used in tandem with ML methods. In particular, human-interpretable CV algorithms such as those that extract color, shape, and texture features increase PCB assurance explainability. This allows for incorporation of prior knowledge, which effectively reduces the number of trainable ML parameters and, thus, the amount of data needed to achieve high accuracy when training or retraining an ML model. Hence, this study explores the benefits and limitations of a variety of common computer vision-based features for the task of PCB component detection. The study results indicate that color features demonstrate promising performance for PCB component detection. The purpose of this paper is to facilitate collaboration between the hardware assurance, computer vision, and machine learning communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.