Pneumonia is an infamous life-threatening lung bacterial or viral infection. The latest viral infection endangering the lives of many people worldwide is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19. This paper is aimed at detecting and differentiating viral pneumonia and COVID-19 disease using digital X-ray images. The current practices include tedious conventional processes that solely rely on the radiologist or medical consultant’s technical expertise that are limited, time-consuming, inefficient, and outdated. The implementation is easily prone to human errors of being misdiagnosed. The development of deep learning and technology improvement allows medical scientists and researchers to venture into various neural networks and algorithms to develop applications, tools, and instruments that can further support medical radiologists. This paper presents an overview of deep learning techniques made in the chest radiography on COVID-19 and pneumonia cases.
Coronavirus disease of 2019 or COVID-19 is a rapidly spreading viral infection that has affected millions all over the world. With its rapid spread and increasing numbers, it is becoming overwhelming for the healthcare workers to rapidly diagnose the condition and contain it from spreading. Hence it has become a necessity to automate the diagnostic procedure. This will improve the work efficiency as well as keep the healthcare workers safe from getting exposed to the virus. Medical image analysis is one of the rising research areas that can tackle this issue with higher accuracy. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet121, Inception-ResNet-V2, InceptionV3, Resnet50, and Xception) to deal with the detection and classification of coronavirus pneumonia from pneumonia cases. This study uses 7165 chest X-ray images of COVID-19 (1536) and pneumonia (5629) patients. Confusion metrics and performance metrics were used to analyze each model. Results show DenseNet121 (99.48% of accuracy) showed better performance when compared with the other models in this study.
Chest X-ray (CXR) interpretations are conducted in hospitals and medical facilities on daily basis. If the interpretation tasks were performed correctly, various vital medical conditions of patients can be revealed such as pneumonia, pneumothorax, interstitial lung disease, heart failure and bone fracture. The current practices often involve tedious manual processes dependent on the expertise of radiologist or consultant, thus, the execution is easily prone to human errors of being misdiagnosed. With the recent advances of deep learning and increased hardware computational power, researchers are working on various networks and algorithms to develop machines learning that can assists radiologists in their diagnosis and reduce the probability of misdiagnosis. This paper presents a review of deep learning advancements made in the field of chest radiography. It discusses single and multi-level localization and segmentation techniques adopted by researchers for higher accuracy and precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.