The Pollen morphology of subfamily Caryophylloideae (Caryophyllaceae) from different phytogeographical region of Pakistan has been evaluated. In this research, 16 species belong to 6 genera of subfamily Caryophylloideae have been studied using light (LM) and scanning electron microscopy (SEM) for both qualitative and quantitative characters. Different palyno-morphological features were observed including; pollen ornamentation, pore ornamentation, echini arrangement, echinidensity, number of pori, size of polar and equatorial diameter, P/E ratio, exine thickness, and size of pore were studied. The palyno-morphological characters of subfamily Caryophylloideae have taxonomically significant in identification and delimitation of species. Two pollen types, i.e., subspheroidal (15 species) and prolate (one species Vaccaria hispanica) were observed. Microechinate-punctate and microechinate-perforate pollen ornamentation were examined. Two pollen types of pori, i.e., prominent (5 species) and sunken (11 species) ornamentation have been reported. Three types of echini arrangement have been reported irregular, regular and rather regular, while three type of echinidensity (i.e., medium, dense and sparse) were observed. Pori numbers were found different in different species range from 5 in Silene apetala to 19-35 in Silene vulgaris. Based on different palyno-morphological characters, taxonomic key was develop for quick and accurate identification. The quantitative data were processed using SPSS software for average, minimum, maximum, and standard error.
Plant pathogens cause serious diseases to agricultural crops which lead to food insecurity in the world. To combat plant pathogens, various strategies have been developed including the use of agrochemicals. The overuse of these chemicals is now leading to the pesticide-resistant capability of pathogens. To overcome this problem, modern nanobiotechnology offers the production of alternative nano drugs. In this study, we used Mentha spicata for the synthesis of iron oxide nanoparticles using the green synthesis method. The synthesis of Fe2O3 NPs was confirmed through various characterizations. UV–Vis analysis detected a characteristic absorbance at the spectral range of 272 nm. The SEM micrographic analysis at various magnifications displayed circular or rod-shaped nanoparticles with a size ranging from 21 to 82 nm. The elemental EDX characterization showed intense peaks with a weight percent of 57, 34.93, and 8.07 for Fe, O, and, Cl respectively. TGA analysis showed that weight loss at 44–182, 500, and 660°C with no further modification indicates the thermal stability of iron oxide nanoparticles. FTIR spectrum of uncalined detects various bands at 3331, 1625, and 1,437 cm−1 for the hydroxyl group. After calcination two bands at 527 and 434 cm−1 were observed for Fe-O. The antimicrobial in vitro study showed maximum growth inhibition of Phytophthora infestans by the concentration of 100 μg ml−1 of Fe2O3-PE and Fe2O3 NPs. Therefore, this study resulted that bio-stable iron oxide nanoparticles can be used as alternative antimicrobial agents.
Traditional medicine is cheaper and easily available to local people, to care for most frequent diseases in the Northern parts of Pakistan. Our study aimed at inventorying medicine from local plants, documenting their uses, and assessing their market value in 2015-2018 during spring, summer, and winter seasons. A total of 15 trips were made, 5 in each season. Semi-structured interviews with 165 inhabitant’s age range between 20-80 years were conducted, analyzed the data is analyzed using Relative frequency of citation(RFC), Use Value(UV), Fidelity Level(FL), Informants consensus factor(ICF), and Jaccard index(JI) to find the most frequent and well-known used species in the area. A total of 86 species belonging to 39 vascular plant families, 33 genera were documented as medicinally important. Family Asteraceae was observed as the dominant family among all the families with 10 species, the leaf was the most used parts and decoction 36% was the most preferred preparation type. Herb was the predominant life form (67%). The maximum UV (0.92) was demonstrated by J. adhatoda L. species, while A. sativum L. shows maximum RFC (0.58), the highest ICF value represented by diarrhea and dermatitis 0.92, and high FL value is recorded 100%. According to our collections, wild species were 45%, invasive species were 38% and cultivated 17% recorded, dicots species were recorded more 81%. Seven 7 medicinal species is being economically important and export to the local and international market of the world, whereas P. integrima L. species were the most exported species according to the local dealers. The investigated area is rural and the local people depend on the area's plants for their health needs, and other uses like a vegetable, fuelwood, fodder, etc. The current result of RFC, UV, ICF, FL, and JI shows that medicinal flora needs to be pharmacologically and phytochemically investigated to prove their efficacy. The documentation of medicinal knowledge is important to preserve this precious old knowledge before it is lost forever, due to technological and environmental changes in the world.
In recent years, the biological synthesis of silver nanoparticles has captured researchers’ attention due to their unique chemical, physical and biological properties. In this study, we report an efficient, nonhazardous, and eco-friendly method for the production of antibacterial silver/silver chloride nanoparticles utilizing the leaf extract of Stachys emodi. The synthesis of se-Ag/AgClNPs was confirmed using UV-visible spectroscopy, DPPH free radical scavenging activity, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). An intense peak absorbance was observed at 437 nm from the UV-visible analysis. The Stachys emodi extract showed the highest DPPH scavenging activity (89.4%). FTIR analysis detected various bands that indicated the presence of important functional groups. The SEM morphological study revealed spherical-shaped nanoparticles having a size ranging from 20 to 70 nm. The XRD pattern showed the formation of a spherical crystal of NPs. The antibacterial activity performed against Erwinia carotovora showed the maximum inhibition by centrifuged silver nanoparticles alone (se-Ag/AgClNPs) and in combination with leaf extract (se-Ag/AgClNPs + LE) and leaf extract (LE) of 98%, 93%, and 62% respectively. These findings suggested that biosynthesized NPs can be used to control plant pathogens effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.